In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms...The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation.In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets.Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM)Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation,while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets.展开更多
Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide rada...Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide radars are highly confusing.There are few available training samples in practical situations,which leads to a low recognition accuracy and poor search effect of the pulse sequence.In this paper,an approach based on bi-directional long short-term memory(BiLSTM)networks and the temporal correlation algorithm for PRI modulation recognition and sequence search under the small sample prerequisite is proposed.The simulation results demonstrate that the proposed algorithm can recognize unilinear,bilinear,sawtooth,and sinusoidal PRI modulation types with 91.43% accuracy and complete the pulse sequence search with 30% missing pulses and 50% spurious pulses under the small sample prerequisite.展开更多
In the complex countermeasure environment,the pulse description words(PDWs)of the same type of multi-function radar emitters are similar in multiple dimensions.Therefore,it is difficult for conventional methods to dei...In the complex countermeasure environment,the pulse description words(PDWs)of the same type of multi-function radar emitters are similar in multiple dimensions.Therefore,it is difficult for conventional methods to deinterleave such emitters.In order to solve this problem,a pulse deinterleaving method based on implicit features is proposed in this paper.The proposed method introduces long short-term memory(LSTM)neural networks and statistical analysis to mine new features from similar PDW features,that is,the variation law(implicit features)of pulse sequences of different radiation sources over time.The multi-function radar emitter is deinterleaved based on the pulse sequence variation law.Statistical results show that the proposed method not only achieves satisfactory performance,but also has good robustness.展开更多
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
文摘The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation.In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets.Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM)Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation,while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets.
基金supported by the National Natural Science Foundation of China(61801143,61971155)the National Natural Science Foundation of Heilongjiang Province(LH2020F019).
文摘Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide radars are highly confusing.There are few available training samples in practical situations,which leads to a low recognition accuracy and poor search effect of the pulse sequence.In this paper,an approach based on bi-directional long short-term memory(BiLSTM)networks and the temporal correlation algorithm for PRI modulation recognition and sequence search under the small sample prerequisite is proposed.The simulation results demonstrate that the proposed algorithm can recognize unilinear,bilinear,sawtooth,and sinusoidal PRI modulation types with 91.43% accuracy and complete the pulse sequence search with 30% missing pulses and 50% spurious pulses under the small sample prerequisite.
基金the National Major Research&Development project of China(2018YFE0206500)the National Natural Science Foundation of China(62071140)+1 种基金the Program of China International Scientific and Technological Cooperation(2015DFR10220)the Technology Foundation for Basic Enhancement Plan(2021-JCJQ-JJ-0301).
文摘In the complex countermeasure environment,the pulse description words(PDWs)of the same type of multi-function radar emitters are similar in multiple dimensions.Therefore,it is difficult for conventional methods to deinterleave such emitters.In order to solve this problem,a pulse deinterleaving method based on implicit features is proposed in this paper.The proposed method introduces long short-term memory(LSTM)neural networks and statistical analysis to mine new features from similar PDW features,that is,the variation law(implicit features)of pulse sequences of different radiation sources over time.The multi-function radar emitter is deinterleaved based on the pulse sequence variation law.Statistical results show that the proposed method not only achieves satisfactory performance,but also has good robustness.