It this paper we obtain existence and bifurcation theorems for homoclinic orbits in three-dimeensional,time dependent and independent,perturbations of generalized Hamiltonian differential equations defined on three-d...It this paper we obtain existence and bifurcation theorems for homoclinic orbits in three-dimeensional,time dependent and independent,perturbations of generalized Hamiltonian differential equations defined on three-dimensional Poisson manifolds.Thed we apply them to a truncated spectral model of the quasi-geostrophic flow on a cyclic β-plane.展开更多
In this paper, we develop a global perturbation technique for the study of periodic orbits in three-dimensional, time dependent and independent, perturbations of generalized Hamiltonian differential equations defined ...In this paper, we develop a global perturbation technique for the study of periodic orbits in three-dimensional, time dependent and independent, perturbations of generalized Hamiltonian differential equations defined on three-dimensional Poisson manifolds. We give existence, stability and bifurcation theorems and illustrate our results with a truncated spectral model of the forced, dissipative quasi-geostrophic flow on a cyclic beta-plane.展开更多
文摘It this paper we obtain existence and bifurcation theorems for homoclinic orbits in three-dimeensional,time dependent and independent,perturbations of generalized Hamiltonian differential equations defined on three-dimensional Poisson manifolds.Thed we apply them to a truncated spectral model of the quasi-geostrophic flow on a cyclic β-plane.
文摘In this paper, we develop a global perturbation technique for the study of periodic orbits in three-dimensional, time dependent and independent, perturbations of generalized Hamiltonian differential equations defined on three-dimensional Poisson manifolds. We give existence, stability and bifurcation theorems and illustrate our results with a truncated spectral model of the forced, dissipative quasi-geostrophic flow on a cyclic beta-plane.