期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于敲击声MFSC特征CNN模型的古建筑木材物理力学性能评估 被引量:1
1
作者 柯栋方 辛振波 +1 位作者 张厚江 彭林 《北京林业大学学报》 CAS CSCD 北大核心 2023年第2期149-160,共12页
【目的】我国有大量的木结构古建筑,在现场对古建筑木构件正常木材的物理力学性能给予方便的检测评估,是古建筑木结构日常保护、修缮和安全评估的刚性需求。本研究对敲击声信号引入机器学习算法处理,力图将便捷的敲击方式应用于古建筑... 【目的】我国有大量的木结构古建筑,在现场对古建筑木构件正常木材的物理力学性能给予方便的检测评估,是古建筑木结构日常保护、修缮和安全评估的刚性需求。本研究对敲击声信号引入机器学习算法处理,力图将便捷的敲击方式应用于古建筑木材物理力学性能的无损检测。【方法】以北京某皇家古建筑拆修下来的4段落叶松旧木构件为原材料,加工无疵试件,首先探究木试件尺寸、密度对敲击声信号的影响,试验测定木试件的密度、抗弯强度、抗弯弹性模量、顺纹抗压强度等物理力学性能参数;然后对试验采集的敲击声信号进行梅尔频率谱系数(MFSC)特征提取,以敲击声MFSC特征为输入、试件物理力学性能为输出,构建古建筑木材物理力学性能卷积神经网络(CNN)评估模型。【结果】试件尺寸对敲击声信号没有影响,密度较高试件的敲击声信号的主峰频率较高;失活层对模型性能有较为明显的影响,失活层失活率为0.2时的拟合效果最佳;所建立的模型对古建筑木材物理力学性能的评估效果良好,密度、抗弯强度、抗弯弹性模量、顺纹抗压强度评估值与真实值之间的决定系数分别达到0.873、0.819、0.746、0.860。【结论】本研究构建的基于敲击声MFSC特征CNN模型,对古建筑木材物理力学性能进行检测评估是可行的。 展开更多
关键词 古建筑木构件 物理力学性能 敲击声 梅尔频率谱系数(mfsc) 卷积神经网络(CNN)
在线阅读 下载PDF
基于两级神经网络的心音分割 被引量:1
2
作者 冯正伟 全海燕 《数据采集与处理》 CSCD 北大核心 2023年第4期849-859,共11页
心音信号是分析诊断心脏疾病的重要信号,而心音分割是对其进行分析处理之前必不可少的一步。本文通过将心音分割任务分离为定位与识别两个子任务,提出一种两级卷积神经网络,由定位网络和判别网络两级构成,分别完成心音信号的识别与定位... 心音信号是分析诊断心脏疾病的重要信号,而心音分割是对其进行分析处理之前必不可少的一步。本文通过将心音分割任务分离为定位与识别两个子任务,提出一种两级卷积神经网络,由定位网络和判别网络两级构成,分别完成心音信号的识别与定位。首先将原始信号通过滑动窗口进行分帧,然后通过短时傅里叶变换得到其频谱,再通过梅尔滤波器得到其梅尔频谱系数(Mel frequency spectral coefficient,MFSC)特征,输入第1个定位网络对其是否为心音段进行判断,如果是的话,再输入判别神经网络,识别第一心音与第二心音,从而实现心音的分割。最后利用多帧结果投票,减小误判。同时,在卷积神经网络中引入空间注意力机制,实验结果表明,这种加入了注意力机制的两级神经网络模型在心音分割任务上比使用单个卷积神经网络分类模型的准确率更高,也使得模型更加简单,轻量化。 展开更多
关键词 心音分割 短时傅里叶变换 梅尔倒谱 卷积神经网络 空间注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部