为了准确地识别铁路转辙机所处的工作状态,保证列车能够安全行驶并转向,提出了一种基于声音信号的转辙机状态识别方法。首先将声音信号预处理后提取其梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC);为更加全面表征转辙机声信...为了准确地识别铁路转辙机所处的工作状态,保证列车能够安全行驶并转向,提出了一种基于声音信号的转辙机状态识别方法。首先将声音信号预处理后提取其梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC);为更加全面表征转辙机声信号的特点,对MFCC进行改进得到多尺度MFCC特征;引入卷积神经网络(convolutional neural network,CNN)构建转辙机声信号识别模型,并采用五折交叉验证法获得两种特征的识别准确率。将S700K型转辙机在4种状态下运行时采集的真实声音信号进行训练和测试。结果表明:多尺度MFCC特征可使转辙机声音状态识别准确率至少提高7.5%。并且在低信噪比(signal-to-noise ratio,SNR)下,多尺度MFCC特征也有更好的表现,其准确率相较传统MFCC可提升35%。展开更多
重音是语言交流中不可或缺的部分,在语言交流中扮演着非常重要的角色。为了验证基于听觉模型的短时谱特征集在汉语重音检测方法中的应用效果,使用MFCC(Mel frequency cepstrum coefficient)和RASTAPLP(relative spectra perceptual line...重音是语言交流中不可或缺的部分,在语言交流中扮演着非常重要的角色。为了验证基于听觉模型的短时谱特征集在汉语重音检测方法中的应用效果,使用MFCC(Mel frequency cepstrum coefficient)和RASTAPLP(relative spectra perceptual linear prediction)算法提取每个语音段的短时谱信息,分别构建了基于MFCC算法的短时谱特征集和基于RASTA-PLP算法的短时谱特征集;选用NaiveBayes分类器对这两类特征集进行建模,把具有最大后验概率的类作为该对象所属的类,这种分类方法充分利用了当前语音段的相关语音特性;基于MFCC的短时谱特征集和基于RASTA-PLP的短时谱特征集在ASCCD(annotated speech corpus of Chinese discourse)上能够分别得到82.1%和80.8%的汉语重音检测正确率。实验结果证明,基于MFCC的短时谱特征和基于RASTA-PLP的短时谱特征能用于汉语重音检测研究。展开更多
文摘重音是语言交流中不可或缺的部分,在语言交流中扮演着非常重要的角色。为了验证基于听觉模型的短时谱特征集在汉语重音检测方法中的应用效果,使用MFCC(Mel frequency cepstrum coefficient)和RASTAPLP(relative spectra perceptual linear prediction)算法提取每个语音段的短时谱信息,分别构建了基于MFCC算法的短时谱特征集和基于RASTA-PLP算法的短时谱特征集;选用NaiveBayes分类器对这两类特征集进行建模,把具有最大后验概率的类作为该对象所属的类,这种分类方法充分利用了当前语音段的相关语音特性;基于MFCC的短时谱特征集和基于RASTA-PLP的短时谱特征集在ASCCD(annotated speech corpus of Chinese discourse)上能够分别得到82.1%和80.8%的汉语重音检测正确率。实验结果证明,基于MFCC的短时谱特征和基于RASTA-PLP的短时谱特征能用于汉语重音检测研究。