期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
基于多窗频谱估计和平滑幅度谱包络的Mel频率倒谱系数(MFCC)改进算法 被引量:6
1
作者 张怡然 白静 王力 《科学技术与工程》 北大核心 2014年第19期253-256,274,共5页
语音的特征提取是说话人识别系统中的关键问题。在传统的Mel频率倒谱系数(MFCC)参数的基础上,提出一种改进的MFCC特征提取算法。该算法着眼于语音的前端处理,在预处理阶段,利用SWCE窗函数,对信号进行多窗频谱估计。并对得到的频谱进行... 语音的特征提取是说话人识别系统中的关键问题。在传统的Mel频率倒谱系数(MFCC)参数的基础上,提出一种改进的MFCC特征提取算法。该算法着眼于语音的前端处理,在预处理阶段,利用SWCE窗函数,对信号进行多窗频谱估计。并对得到的频谱进行平滑处理,得到信号的谱包络。然后对信号的谱包络进行计算,得到改进的MFCC参数。实验表明,在不同噪声环境下,与传统的MFCC算法相比,改进的算法识别率提高四个百分点以上。 展开更多
关键词 mel频率系数 多窗频估计 滑动平均滤波 包络 说话人识别
在线阅读 下载PDF
基于Mel频率倒谱系数和遗传算法的煤矸界面识别研究 被引量:6
2
作者 何爱香 王平建 +1 位作者 魏广芬 张守祥 《工矿自动化》 北大核心 2013年第2期66-71,共6页
针对现有的煤矸界面识别技术采用的γ射线法不适用于顶板不含放射性元素或者放射性元素含量较低的工作面,而雷达探测法探测范围小、信号衰减严重的问题,提出了一种基于Mel频率倒谱系数和遗传算法的煤矸界面识别方法。该方法利用煤矸放... 针对现有的煤矸界面识别技术采用的γ射线法不适用于顶板不含放射性元素或者放射性元素含量较低的工作面,而雷达探测法探测范围小、信号衰减严重的问题,提出了一种基于Mel频率倒谱系数和遗传算法的煤矸界面识别方法。该方法利用煤矸放落过程中产生的声波信号的特征差异进行煤矸识别,采用Mel频率倒谱系数将去噪后的煤矸声波信号变换到频域进行处理,提取出煤矸声波信号的32维特征参数;采用遗传算法优化处理32维特征参数,得到最优参数组合;采用支持向量机和BP神经网络对最优参数进行识别。实验结果表明,该方法能够准确识别出煤矸下落状态。 展开更多
关键词 放顶煤开采 煤矸界面识别 mel频率系数 mfcc 遗传算法 支持向量机 BP神经网络
在线阅读 下载PDF
基于梅尔谱特征和改进ResNet网络的室内跌倒检测方法
3
作者 杨松铭 王玫 《桂林理工大学学报》 北大核心 2025年第2期251-259,共9页
为了解决现有的老年人跌倒事件识别方法存在的相关局限性,提出一种利用声音信号来进行跌倒检测的方法。该方法在声学特征提取阶段,从时间维度对梅尔谱特征进行补充,将梅尔谱及其一阶、二阶差分系数构建为类似图片的三维特征,使用卷积神... 为了解决现有的老年人跌倒事件识别方法存在的相关局限性,提出一种利用声音信号来进行跌倒检测的方法。该方法在声学特征提取阶段,从时间维度对梅尔谱特征进行补充,将梅尔谱及其一阶、二阶差分系数构建为类似图片的三维特征,使用卷积神经网络进行分类,提高了室内跌倒事件识别的抗噪性能。通过SimAM注意力、特征金字塔(FPN)以及动态区域感知卷积(DRConv)来改进网络结构。实验结果表明,在不同数据集下,该方法比传统识别方法性能更优。改进后的网络模型在A3FALL数据集上的查准率、召回率和F1-Score分别达到了98.43%、98.21%和98.32%;对于人类跌倒的声音识别,其F1-Score达到了96.45%,相较于其他传统网络模型都具有更好的表现。 展开更多
关键词 检测 SimAM 卷积神经网络 特征金字塔 动态区域感知卷积 梅尔频率系数(mfcc)
在线阅读 下载PDF
利用抗噪幂归一化倒谱系数的鸟类声音识别 被引量:18
4
作者 颜鑫 李应 《电子学报》 EI CAS CSCD 北大核心 2013年第2期295-300,共6页
针对真实环境中各种背景噪声下的鸟类声音识别问题,提出了一种基于新型抗噪特征提取的鸟类声音识别技术.首先,根据适用于高度非平稳环境下的噪声估计算法求出噪声功率谱.其次,使用多频带谱减法对声音功率谱进行降噪处理.接着,结合降噪... 针对真实环境中各种背景噪声下的鸟类声音识别问题,提出了一种基于新型抗噪特征提取的鸟类声音识别技术.首先,根据适用于高度非平稳环境下的噪声估计算法求出噪声功率谱.其次,使用多频带谱减法对声音功率谱进行降噪处理.接着,结合降噪的声音功率谱提取抗噪幂归一化倒谱系数(APNCC).最后,采用支持向量机(SVM)分别对提取的APNCC,幂归一化倒谱系数(PNCC)和Mel频率倒谱系数(MFCC)对34种鸟类声音进行不同环境和信噪比情况下的对比实验.实验表明,提取的APNCC具有较好的平均识别效果及较强的噪声鲁棒性,更适用于信噪比低于30dB环境下的鸟类声音识别. 展开更多
关键词 鸟类声音识别 非平稳噪声估计 多频带减法 抗噪幂归一化系数 mel频率系数
在线阅读 下载PDF
基于多尺度梅尔倒谱系数的转辙机声信号状态识别方法 被引量:4
5
作者 姜琦 冯庆胜 《科学技术与工程》 北大核心 2022年第16期6680-6686,共7页
为了准确地识别铁路转辙机所处的工作状态,保证列车能够安全行驶并转向,提出了一种基于声音信号的转辙机状态识别方法。首先将声音信号预处理后提取其梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC);为更加全面表征转辙机声信... 为了准确地识别铁路转辙机所处的工作状态,保证列车能够安全行驶并转向,提出了一种基于声音信号的转辙机状态识别方法。首先将声音信号预处理后提取其梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC);为更加全面表征转辙机声信号的特点,对MFCC进行改进得到多尺度MFCC特征;引入卷积神经网络(convolutional neural network,CNN)构建转辙机声信号识别模型,并采用五折交叉验证法获得两种特征的识别准确率。将S700K型转辙机在4种状态下运行时采集的真实声音信号进行训练和测试。结果表明:多尺度MFCC特征可使转辙机声音状态识别准确率至少提高7.5%。并且在低信噪比(signal-to-noise ratio,SNR)下,多尺度MFCC特征也有更好的表现,其准确率相较传统MFCC可提升35%。 展开更多
关键词 梅尔系数(mfcc) 卷积神经网络(CNN) 交叉验证 状态识别 转辙机
在线阅读 下载PDF
梅尔频率倒谱耦合神经网络的焊接缺陷检测
6
作者 金晖 金传伟 +2 位作者 刘俊勇 刘利民 刘念 《计算机工程与设计》 北大核心 2016年第7期1911-1915,共5页
当前焊接图像缺陷检测技术因依赖焊接几何特征缺陷,对微小缺陷中黑暗边缘的噪声较为敏感,导致其定位精度不佳,为此提出一种梅尔频率倒谱耦合神经网络特征匹配的焊接缺陷检测算法。利用DCT(discrete cosine transform)与Zigzag机制,将焊... 当前焊接图像缺陷检测技术因依赖焊接几何特征缺陷,对微小缺陷中黑暗边缘的噪声较为敏感,导致其定位精度不佳,为此提出一种梅尔频率倒谱耦合神经网络特征匹配的焊接缺陷检测算法。利用DCT(discrete cosine transform)与Zigzag机制,将焊接图像排列成1D信号数组;将1D信号分割为多个帧,构造窗口函数,增强相邻帧之间的连续性,引入倒谱技术,查询1D信号的稳定特性,提取其梅尔频率倒谱系数;定义两个正交多项式,建立多项式系数计算模型,提取多项式系数。基于神经网络训练,对提取特征与数据库特征进行匹配,完成缺陷检测。实验结果表明,与当前焊接缺陷检测技术相比,该算法的定位精度高达90%,鲁棒性更强,不受噪声影响。 展开更多
关键词 焊接图像 缺陷检测 梅尔频率 神经网络 窗口函数 多项式系数
在线阅读 下载PDF
采用复倒谱峰值滤波GMM识别混响语音
7
作者 孔荣 吴迪 +3 位作者 廖启鹏 朱俊杰 周强 陶智 《计算机工程与应用》 CSCD 2014年第15期191-193,203,共4页
针对混响环境下语音识别系统性能急剧下降问题,提出一种采用复倒谱峰值滤波GMM识别混响语音的方法。通过训练纯净语音的MFCC特征参数构建高斯混合模型,在识别混响语音前引入复倒谱峰值滤波器以减少混响引起的语音失真而提高混响环境下... 针对混响环境下语音识别系统性能急剧下降问题,提出一种采用复倒谱峰值滤波GMM识别混响语音的方法。通过训练纯净语音的MFCC特征参数构建高斯混合模型,在识别混响语音前引入复倒谱峰值滤波器以减少混响引起的语音失真而提高混响环境下语音识别率。经实验验证,该方法避免了在现实条件下准确估计房间冲击响应函数的麻烦,降低了计算难度,提高了混响环境下至少4%的系统识别率。 展开更多
关键词 高斯混合模型 mel频率系数(mfcc)
在线阅读 下载PDF
基于MFCC相似度和谱熵的端点检测算法 被引量:6
8
作者 邓瑞 肖纯智 高勇 《现代电子技术》 2013年第21期67-69,共3页
为提高低信噪比环境下语音端点检测的准确率,提出了一种基于Mel倒谱参数相似度和谱熵的端点检测算法。首先,提取语音帧的的Mel频率倒谱参数,将前十帧声信号作为背景噪声,然后计算每一帧语音和噪声MFCC的相关系数距离,结合MFCC相似距离... 为提高低信噪比环境下语音端点检测的准确率,提出了一种基于Mel倒谱参数相似度和谱熵的端点检测算法。首先,提取语音帧的的Mel频率倒谱参数,将前十帧声信号作为背景噪声,然后计算每一帧语音和噪声MFCC的相关系数距离,结合MFCC相似距离与谱熵做综合判决。实验结果表明,在低信噪比环境下此方法相对谱熵法能够提高检测准确率。 展开更多
关键词 语音信号处理 端点检测 mel频率参数 相关系数
在线阅读 下载PDF
融合倒谱特征的脑电(EEG)情感分类 被引量:7
9
作者 周奕隽 李冬冬 +1 位作者 王喆 高大启 《计算机工程与应用》 CSCD 北大核心 2020年第21期164-169,共6页
近年来,通过分析脑电图(EEG)信号来实现情感识别的课题越来越被研究者所重视。为了丰富特征的表示能力,获得更高的情感识别分类准确率,尝试将语音信号特征梅尔频率倒谱系数MFCC应用于脑电信号。在对EEG信号小波变换的基础上将提取得到的... 近年来,通过分析脑电图(EEG)信号来实现情感识别的课题越来越被研究者所重视。为了丰富特征的表示能力,获得更高的情感识别分类准确率,尝试将语音信号特征梅尔频率倒谱系数MFCC应用于脑电信号。在对EEG信号小波变换的基础上将提取得到的MFCC特征与EEG特征相互融合,通过利用深度残差网络(ResNet18)的特性进行情感分类识别。实验结果表明,比起传统的单一利用EEG特征,添加了MFCC特征使得情感维度Arousal和Valence两者的识别准确率分别提升了6%和4%,达到了86.01%和85.46%,从而提升了情感的识别准确度。 展开更多
关键词 脑电信号 梅尔系数(mfcc) 特征融合 深度残差网络
在线阅读 下载PDF
基于GMM模型和LPC-MFCC联合特征的声道谱转换研究 被引量:11
10
作者 曾歆 张雄伟 +2 位作者 孙蒙 苗晓孔 姚琨 《声学技术》 CSCD 北大核心 2020年第4期451-455,共5页
声道谱转换是语音转换中的关键技术。目前,大多数语音转换方法对声道谱的转换都是先提取语音中的某一种声道特征参数,然后对其进行训练转换,进而合成转换语音。由于不同的声道特征参数表征着不同的物理和声学意义,因此这些方法通常忽略... 声道谱转换是语音转换中的关键技术。目前,大多数语音转换方法对声道谱的转换都是先提取语音中的某一种声道特征参数,然后对其进行训练转换,进而合成转换语音。由于不同的声道特征参数表征着不同的物理和声学意义,因此这些方法通常忽略了不同声道特征参数之间可能存在的互补性。针对这一问题,研究了不同声道特征参数之间进行联合建模的方法,引入了一种由线性预测系数(LinearPredictionCoefficient,LPC)和梅尔频率倒谱系数(Mel-Frequency Cepstral Coefficient, MFCC)联合构成的LPC-MFCC特征参数,提出了一种基于高斯混合模型(Gaussian Mixture Model, GMM)和LPC-MFCC联合特征参数的语音转换方法。为验证文中方法的有效性,仿真实验选取了基于GMM和LPC的语音转换方法进行对比,对多组实验数据进行主观和客观测试,结果表明,文中提出的语音转换方法可以获得相似度更高的转换语音。 展开更多
关键词 语音转换 声道转换 高斯混合模型 联合建模 线性预测系数-梅尔频率系数
在线阅读 下载PDF
改进的混合MFCC语音识别算法研究 被引量:18
11
作者 袁正午 肖旺辉 《计算机工程与应用》 CSCD 北大核心 2009年第33期108-110,共3页
针对MFCC特征参数在语音识别中对中高频信号的识别精度不高的特点,提出采用IMFCC,MIDMFCC,MFCC相结合的改进算法,使用混合滤波器组,提高在语音中高频区域中的识别精度。实验结果表明,改进之后的算法与经典算法比较,在相同环境下对语音... 针对MFCC特征参数在语音识别中对中高频信号的识别精度不高的特点,提出采用IMFCC,MIDMFCC,MFCC相结合的改进算法,使用混合滤波器组,提高在语音中高频区域中的识别精度。实验结果表明,改进之后的算法与经典算法比较,在相同环境下对语音信息的识别率都有一定程度的提高。 展开更多
关键词 mel频率系数(mfcc) 语音识别 特征提取
在线阅读 下载PDF
结合MFCC分析和仿生模式识别的语音识别研究 被引量:4
12
作者 王宪保 陈勇 汤丽平 《计算机工程与应用》 CSCD 北大核心 2011年第12期20-22,26,共4页
提出了一种基于MFCC系数分析和仿生模式识别的语音识别方法,该方法对训练样本MFCC相同分量在各类语音间距离进行了分析,并通过与传统选取方法的比较实验,说明在小词汇量的语音识别中,选取合适的MFCC系数,不仅能减小计算量,正确识别率也... 提出了一种基于MFCC系数分析和仿生模式识别的语音识别方法,该方法对训练样本MFCC相同分量在各类语音间距离进行了分析,并通过与传统选取方法的比较实验,说明在小词汇量的语音识别中,选取合适的MFCC系数,不仅能减小计算量,正确识别率也会得到一定程度的提高。运用仿生模式识别理论中同类样本连续的观点,通过在特征空间中对训练样本进行有效的覆盖,大大提高了识别结果。 展开更多
关键词 仿生模式识别 语音识别 mel频率系数(mfcc)
在线阅读 下载PDF
结合节拍语义和MFCC声学特征的音乐流派分类 被引量:7
13
作者 庄严 于凤芹 《计算机工程与应用》 CSCD 北大核心 2015年第3期197-201,共5页
由于音乐节拍的强度、快慢、持续时间等是反映音乐不同流派风格的重要语义特征,而音乐节拍多属于由打击乐器所产生的低频部分,为此利用小波变换对音乐信号进行6层分解来提取低频节拍特征;针对节拍特征差异不明显的音乐流派,提出用描述... 由于音乐节拍的强度、快慢、持续时间等是反映音乐不同流派风格的重要语义特征,而音乐节拍多属于由打击乐器所产生的低频部分,为此利用小波变换对音乐信号进行6层分解来提取低频节拍特征;针对节拍特征差异不明显的音乐流派,提出用描述频域能量包络的MFCC声学特征与节拍特征结合,并用基于音乐流派机理分析的8阶MFCC代替常用的12阶MFCC。对8类音乐流派实验仿真结果表明,基于语义特征和声学特征结合的方法,总体分类准确率可达68.37%,同时特征维数增加对分类时间影响很小。 展开更多
关键词 音乐流派分类 节拍特征 mel频率系数(mfcc) 小波分解 支持向量机
在线阅读 下载PDF
基于MFCC特征的声纹同一性鉴定方法 被引量:18
14
作者 王学光 诸珺文 张爱新 《计算机科学》 CSCD 北大核心 2021年第12期343-348,共6页
声纹作为当代司法鉴定技术发展的产物,在现代声像资料鉴定中发挥了至关重要的作用。传统的声纹分析方法是基于声音处理工具进行手工分析的,考虑到其具有严格的文本相关性以及比对的臆断性的缺点,其作为证据鉴定意见的证明力有待加强。... 声纹作为当代司法鉴定技术发展的产物,在现代声像资料鉴定中发挥了至关重要的作用。传统的声纹分析方法是基于声音处理工具进行手工分析的,考虑到其具有严格的文本相关性以及比对的臆断性的缺点,其作为证据鉴定意见的证明力有待加强。文中提出了一种基于Mel频率倒谱系数的同一性鉴定方法,即提取并量化包含原始声音的共振峰及其时间轴信息的包络作为声纹特征进行同一性比对。此方法改进了传统Mel频率倒谱系数的不足,提取共振峰的突变并将元音与响辅音的转变特性加入声纹特征,以提高其识别度。实验证明,此方法在检材与样本无关的情况下,同一性鉴定的准确率达到了85%,方差控制在9%左右,具有良好的同一性识别;而在非同一性鉴定中,该方法也能在结合人工分析的情况下给出较准确的结果。 展开更多
关键词 mfcc特征 mel频率系数 同一性鉴定 证明力补强
在线阅读 下载PDF
新型MFCC和波动模型相结合的二层环境声音识别 被引量:3
15
作者 李勇 李应 余清清 《计算机工程与应用》 CSCD 北大核心 2011年第30期132-135,139,共5页
对生态环境中各种不同的声音进行快速准确的识别有重要的现实意义,但是因其具有较高背景噪声加大了识别的难度。提出一种具有良好抗噪能力和较高识别性能的两层音频识别技术。选择经过改进的新型的MFCC参数以及波动模型作为生态环境声... 对生态环境中各种不同的声音进行快速准确的识别有重要的现实意义,但是因其具有较高背景噪声加大了识别的难度。提出一种具有良好抗噪能力和较高识别性能的两层音频识别技术。选择经过改进的新型的MFCC参数以及波动模型作为生态环境声音的特征集合。利用这种新型的MFCC系数构造音频信号的高斯分布模型,并且计算未知音频信号与样本音频信号的高斯分布模型之间的Kullback-Leibler距离,随后计算它们的波动模型之间的欧几里德距离。根据计算出的Kullback-Leibler距离和欧几里德距离实现两层音频识别系统。实验结果表明两层音频识别技术即使在噪声的影响下也能保持较高的识别率。 展开更多
关键词 生态环境 声音识别 改进的mel频率参数 波动模型 Kullback-Leibler距离
在线阅读 下载PDF
MFCC特征加权应力影响下的变异语音识别 被引量:1
16
作者 张磊 韩纪庆 王承发 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2002年第6期743-747,共5页
为了提高语音识别系统的顽健性,在对应力影响下语音数据分析的基础上,提出一种新的基于MF-CC系数加权的变异语音识别方法.它首先通过正常语音和应力影响下变异语音的差异求得一个变异影响因子,然后对该因子的倒数进行规正作为MFCC特征... 为了提高语音识别系统的顽健性,在对应力影响下语音数据分析的基础上,提出一种新的基于MF-CC系数加权的变异语音识别方法.它首先通过正常语音和应力影响下变异语音的差异求得一个变异影响因子,然后对该因子的倒数进行规正作为MFCC特征不同维的权值,从而减弱受变异影响较大的特征对识别性能的影响.对航空模拟飞行器中采集的特定话者小词表孤立词的实验表明,与传统的多重风格训练方法相比,该方法的识别率提高了10.9%;将其和倒谱平均减方法相结合,可进一步将识别率提高5.4%. 展开更多
关键词 mfcc 特征加权 语音识别 应力 变异语音 mel频率系数
在线阅读 下载PDF
基于频率段的语音识别算法设计与实现 被引量:1
17
作者 袁正午 肖旺辉 《计算机工程与设计》 CSCD 北大核心 2011年第2期659-662,共4页
线性预测倒谱参数(LPCC)能很好的体现人的声道特性,而梅尔倒谱参数(MFCC)能很好的模拟人耳的听觉效应。针对MFCC在不同频率段的识别精度不一致和LPCC不能准确模拟人的听觉系统问题,将MFCC参数和IMFCC参数分别作为语音不同频率段的特征参... 线性预测倒谱参数(LPCC)能很好的体现人的声道特性,而梅尔倒谱参数(MFCC)能很好的模拟人耳的听觉效应。针对MFCC在不同频率段的识别精度不一致和LPCC不能准确模拟人的听觉系统问题,将MFCC参数和IMFCC参数分别作为语音不同频率段的特征参数,结合线性预测参数(LPCC),均衡滤波器的分布,完整覆盖到整个频率段范围。将梅尔倒谱参数和线性预测参数结合起来作为语音识别的特征提取参数。实验结果表明,改进之后的算法从效率上和识别率上都有不同程度的提高。 展开更多
关键词 线性预测参数(LPCC) 梅尔系数(mfcc) 逆梅尔系数(Imfcc) 语音识别 特征提取
在线阅读 下载PDF
采用MFCC和DTW的咳嗽干湿性自动分类技术 被引量:3
18
作者 李文 莫鸿强 +2 位作者 田联房 阳国清 郑则广 《计算机工程与应用》 CSCD 北大核心 2010年第13期209-212,共4页
咳嗽是一种在呼吸疾病中常见的症状。对病人的咳嗽类型进行分类和统计对病人的病理分析将有极大帮助。提出了一种基于MFCC特征和DTW模板匹配的方法来对病人的咳嗽进行自动干湿性分类。通过训练咳嗽样本,使用特征提取算法得到它们的MFCC... 咳嗽是一种在呼吸疾病中常见的症状。对病人的咳嗽类型进行分类和统计对病人的病理分析将有极大帮助。提出了一种基于MFCC特征和DTW模板匹配的方法来对病人的咳嗽进行自动干湿性分类。通过训练咳嗽样本,使用特征提取算法得到它们的MFCC特征参数从而生成用于比较的参考模板库。然后对需要进行分类的咳嗽信号进行同样的特征提取过程,并将参数和模板库中的进行匹配从而得出咳嗽的干湿性类别。文中对78个未知类型的咳嗽样本进行分类,得出干性咳嗽57个,湿性咳嗽21个,分类错误率为7.69%。经进一步处理,可以将分类错误率减少到仅为2.56%。 展开更多
关键词 咳嗽自动分类 mel频率系数(mfcc) 动态时间规整(DTW)
在线阅读 下载PDF
采用GW-MFCC模型空间参数的语音情感识别 被引量:2
19
作者 沈燕 肖仲喆 +3 位作者 李冰洁 周孝进 周强 陶智 《计算机工程与应用》 CSCD 北大核心 2015年第10期219-222,226,共5页
针对单一语音特征对语音情感表达不完整的问题,将具有良好量化和插值特性的LSF参数与体现人耳听觉特性的MFCC参数相融合,提出基于线谱权重的MFCC(WMFCC)新特征。同时,通过高斯混合模型来对该参数建立模型空间,进一步得到GW-MFCC模型空... 针对单一语音特征对语音情感表达不完整的问题,将具有良好量化和插值特性的LSF参数与体现人耳听觉特性的MFCC参数相融合,提出基于线谱权重的MFCC(WMFCC)新特征。同时,通过高斯混合模型来对该参数建立模型空间,进一步得到GW-MFCC模型空间参数,以获取更高维的细节信息,进一步提高情感识别性能。采用柏林情感语料库进行验证,新参数的识别率比传统的MFCC和LSF分别有5.7%和6.9%的提高。实验结果表明,提出的WMFCC以及GW-MFCC参数可以有效地表现语音情感信息,提高语音情感识别率。 展开更多
关键词 语音情感识别 线频率(LSF) mel频率系数(mfcc) 高斯混合模型 模型空间
在线阅读 下载PDF
短时谱特征的汉语重音检测方法研究 被引量:2
20
作者 赵云雪 张珑 郑世杰 《计算机科学与探索》 CSCD 2014年第9期1120-1128,共9页
重音是语言交流中不可或缺的部分,在语言交流中扮演着非常重要的角色。为了验证基于听觉模型的短时谱特征集在汉语重音检测方法中的应用效果,使用MFCC(Mel frequency cepstrum coefficient)和RASTAPLP(relative spectra perceptual line... 重音是语言交流中不可或缺的部分,在语言交流中扮演着非常重要的角色。为了验证基于听觉模型的短时谱特征集在汉语重音检测方法中的应用效果,使用MFCC(Mel frequency cepstrum coefficient)和RASTAPLP(relative spectra perceptual linear prediction)算法提取每个语音段的短时谱信息,分别构建了基于MFCC算法的短时谱特征集和基于RASTA-PLP算法的短时谱特征集;选用NaiveBayes分类器对这两类特征集进行建模,把具有最大后验概率的类作为该对象所属的类,这种分类方法充分利用了当前语音段的相关语音特性;基于MFCC的短时谱特征集和基于RASTA-PLP的短时谱特征集在ASCCD(annotated speech corpus of Chinese discourse)上能够分别得到82.1%和80.8%的汉语重音检测正确率。实验结果证明,基于MFCC的短时谱特征和基于RASTA-PLP的短时谱特征能用于汉语重音检测研究。 展开更多
关键词 重音检测 mel频率系数(mfcc) 相关感知线性预测(RASTA-PLP) 短时特征
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部