期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Mel-GADF与ConvNeXt-T的变压器铁心松动故障诊断方法 被引量:9
1
作者 万可力 马宏忠 +1 位作者 崔佳嘉 王健 《电力自动化设备》 EI CSCD 北大核心 2024年第3期217-224,共8页
为解决传统梅尔(Mel)时频谱图对变压器铁心松动程度识别率较低的问题,提出一种基于梅尔-格拉姆角差场(Mel-GADF)时频谱图与ConvNeXt-T网络相结合的变压器铁心松动故障诊断模型。将变压器声纹信号生成Mel时频谱图,同时将原始声纹数据经... 为解决传统梅尔(Mel)时频谱图对变压器铁心松动程度识别率较低的问题,提出一种基于梅尔-格拉姆角差场(Mel-GADF)时频谱图与ConvNeXt-T网络相结合的变压器铁心松动故障诊断模型。将变压器声纹信号生成Mel时频谱图,同时将原始声纹数据经过格拉姆角场(GAF)变换得到格拉姆角和场(GASF)与GADF这2种时频谱图;生成Mel-GASF与Mel-GADF这2种特征融合的时频谱图来弥补Mel时频谱图的低频缺失问题;将3种时频谱图放入ConvNeXt-T网络进行训练对比,选出效果最佳的诊断模型。以型号为S13-M-200/10的变压器为对象进行空载试验,对不同铁心松动程度下的声纹信号进行分析,分析结果表明,将Mel-GADF作为特征时频谱图结合ConvNeXt-T网络,可将测试集准确率从传统Mel时频谱图的98.273%提升至99.500%,提升了1.227个百分点。 展开更多
关键词 变压器 铁心松动 mel时频谱图 格拉姆角场 卷积神经网络 迁移学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部