WiMAX下的编码方式是当今通讯技术研究的热门。介绍一种最受关注的纠错编码:低密度奇偶校验码(Low Density Parity Check,LDPC),讨论LDPC码在WiMAX条件下的基本原理和编译码设计;提出运用Visual C++特点构建LDPC码仿真平台,研究仿真设...WiMAX下的编码方式是当今通讯技术研究的热门。介绍一种最受关注的纠错编码:低密度奇偶校验码(Low Density Parity Check,LDPC),讨论LDPC码在WiMAX条件下的基本原理和编译码设计;提出运用Visual C++特点构建LDPC码仿真平台,研究仿真设计过程;分析不同实现方法下对LDPC码性能的影响,通过对仿真结果的分析和思考,说明了Visual C++语言应用于LDPC编译码仿真的可行性、实用性和扩展性。展开更多
As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optim...As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time.展开更多
This paper introduces a multi-agent system which i nt egrates process planning and production scheduling, in order to increase the fle xibility of manufacturing systems in coping with rapid changes in dynamic market a...This paper introduces a multi-agent system which i nt egrates process planning and production scheduling, in order to increase the fle xibility of manufacturing systems in coping with rapid changes in dynamic market and dealing with internal uncertainties such as machine breakdown or resources shortage. This system consists of various autonomous agents, each of which has t he capability of communicating with one another and making decisions based on it s knowledge and if necessary on information provided by other agents. Machine ag ents which represent the machines play an important role in the system in that t hey negotiate with each other to bid for jobs. An iterative bidding mechanism is proposed to facilitate the process of job assignment to machines and handle the negotiation between agents. This mechanism enables near optimal process plans a nd production schedules to be produced concurrently, so that dynamic changes in the market can be coped with at a minimum cost, and the utilisation of manufactu ring resources can be optimised. In addition, a currency scheme with currency-l ike metrics is proposed to encourage or prohibit machine agents to put forward t heir bids for the jobs announced. The values of the metrics are adjusted iterati vely so as to obtain an integrated plan and schedule which result in the minimum total production cost while satisfying products due dates. To deal with the optimisation problem, i.e. to what degree and how the currencies should be adj usted in each iteration, a genetic algorithm (GA) is developed. Comparisons are made between GA approach and simulated annealing (SA) optimisation technique.展开更多
Due to the complicated background of objectives and speckle noise, it is almost impossible to extract roads directly from original synthetic aperture radar(SAR) images. A method is proposed for extraction of road netw...Due to the complicated background of objectives and speckle noise, it is almost impossible to extract roads directly from original synthetic aperture radar(SAR) images. A method is proposed for extraction of road network from high-resolution SAR image. Firstly, fuzzy C means is used to classify the filtered SAR image unsupervisedly, and the road pixels are isolated from the image to simplify the extraction of road network. Secondly, according to the features of roads and the membership of pixels to roads, a road model is constructed, which can reduce the extraction of road network to searching globally optimization continuous curves which pass some seed points. Finally, regarding the curves as individuals and coding a chromosome using integer code of variance relative to coordinates, the genetic operations are used to search global optimization roads. The experimental results show that the algorithm can effectively extract road network from high-resolution SAR images.展开更多
提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFC...提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFCM算法的聚类算法.CF-WFCM算法强化重要属性在聚类过程中的作用,消减冗余属性的作用,从而改善聚类的效果.我们选取了部分UCI数据库进行实验,实验结果证明:CF-WFCM算法的聚类结果优于FCM算法的聚类结果.函数CFuzziness(w)不仅可以评价属性的重要性,而且可以评价属性评价函数的优劣.实验说明了这一问题.最后我们对CF-WFCM算法进行了讨论.展开更多
基金supported by the National Natural Science Foundation of China(61771293)the Key Project of Shangdong Province(2019JZZY010111)。
文摘As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time.
文摘This paper introduces a multi-agent system which i nt egrates process planning and production scheduling, in order to increase the fle xibility of manufacturing systems in coping with rapid changes in dynamic market and dealing with internal uncertainties such as machine breakdown or resources shortage. This system consists of various autonomous agents, each of which has t he capability of communicating with one another and making decisions based on it s knowledge and if necessary on information provided by other agents. Machine ag ents which represent the machines play an important role in the system in that t hey negotiate with each other to bid for jobs. An iterative bidding mechanism is proposed to facilitate the process of job assignment to machines and handle the negotiation between agents. This mechanism enables near optimal process plans a nd production schedules to be produced concurrently, so that dynamic changes in the market can be coped with at a minimum cost, and the utilisation of manufactu ring resources can be optimised. In addition, a currency scheme with currency-l ike metrics is proposed to encourage or prohibit machine agents to put forward t heir bids for the jobs announced. The values of the metrics are adjusted iterati vely so as to obtain an integrated plan and schedule which result in the minimum total production cost while satisfying products due dates. To deal with the optimisation problem, i.e. to what degree and how the currencies should be adj usted in each iteration, a genetic algorithm (GA) is developed. Comparisons are made between GA approach and simulated annealing (SA) optimisation technique.
文摘Due to the complicated background of objectives and speckle noise, it is almost impossible to extract roads directly from original synthetic aperture radar(SAR) images. A method is proposed for extraction of road network from high-resolution SAR image. Firstly, fuzzy C means is used to classify the filtered SAR image unsupervisedly, and the road pixels are isolated from the image to simplify the extraction of road network. Secondly, according to the features of roads and the membership of pixels to roads, a road model is constructed, which can reduce the extraction of road network to searching globally optimization continuous curves which pass some seed points. Finally, regarding the curves as individuals and coding a chromosome using integer code of variance relative to coordinates, the genetic operations are used to search global optimization roads. The experimental results show that the algorithm can effectively extract road network from high-resolution SAR images.
文摘采用UHPLC-QE-Orbitrap MS技术结合网络分析和化学计量学建立钴胺素C(cblC)缺乏症的临床表型系统表征和预测模型,利用尝试解开其复杂性。基于UHPLC-QE-Orbitrap MS技术在正、负模式下采集的血液非靶向代谢组学图谱,利用数据驱动网络算法Connect the Dots(CTD)快速搜索高连通的扰动代谢物,化学计量学算法学习其组别间复杂微小变化模式。通过对两种临床表型(癫痫和代谢综合征)的研究,结果表明CTD算法识别出的扰动代谢物子集展示出高度的临床表型特异性,且涉及的富集通路扰动均被报道与癫痫和代谢综合征的致病机制密切相关。进一步,CTD算法能够量度高连通扰动代谢物间的协变信息,构建主要疾病模块系统地表征癫痫和代谢综合征的复杂致病机制。识别出的扰动代谢物作为特征变量集,采用5-折交叉验证,偏最小二乘判别分析、支持向量机和随机森林的受试者工作特征曲线下面积预测均值分别为0.849、0.897和0.909(癫痫),0.889、0.931和0.921(代谢综合征),马修斯相关系数预测均值分别为0.667、0.668和0.723(癫痫),0.686、0.696和0.787(代谢综合征)。上述结果表明了提出的计算方法在揭示cblC缺乏症的临床表型复杂性和指导其个性化诊断策略方面的有效性。
文摘提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFCM算法的聚类算法.CF-WFCM算法强化重要属性在聚类过程中的作用,消减冗余属性的作用,从而改善聚类的效果.我们选取了部分UCI数据库进行实验,实验结果证明:CF-WFCM算法的聚类结果优于FCM算法的聚类结果.函数CFuzziness(w)不仅可以评价属性的重要性,而且可以评价属性评价函数的优劣.实验说明了这一问题.最后我们对CF-WFCM算法进行了讨论.