期刊文献+
共找到1,189篇文章
< 1 2 60 >
每页显示 20 50 100
Matlab自组织神经网络在遥感图像分类中的应用 被引量:19
1
作者 杜华强 范文义 《东北林业大学学报》 CAS CSCD 北大核心 2003年第4期51-53,共3页
以Matlab平台为基础 ,利用神经网络工具箱构建了自组织神经网络 ,对一幅TM4 32假彩色遥感图像通过 30 0次训练后 ,仿真输出能真实地反映原始图像的特征。其分类总精度为 87.14 % ,Kappa系数为 0 .85 。
关键词 matlab自组织神经网络 遥感图像 应用 网络工具箱 仿真输出 原始图像
在线阅读 下载PDF
基于自组织映射-前馈神经网络和先知混合模型的短期负荷预测 被引量:1
2
作者 陈宇航 王渝红 +3 位作者 南璐 何川 王腾鑫 张敏 《现代电力》 北大核心 2025年第2期352-359,共8页
为提高电力系统短期负荷预测精度,充分挖掘历史数据中的多维度信息,更好地克服历史数据缺失带来的不利影响,提出一种基于自组织映射-前馈神经网络和先知混合模型的短期负荷预测方法。首先通过SOM神经网络对历史非功率数据聚类计算得到... 为提高电力系统短期负荷预测精度,充分挖掘历史数据中的多维度信息,更好地克服历史数据缺失带来的不利影响,提出一种基于自组织映射-前馈神经网络和先知混合模型的短期负荷预测方法。首先通过SOM神经网络对历史非功率数据聚类计算得到相似日集合,而后采用相似日数据对BP神经网络进行训练得到单点负荷值预测结果。其次,重点考虑历史数据的周期性和时序变化趋势,基于Prophet时序模型对历史负荷数据进行周期非线性拟合。通过历史数据拟合误差反馈,调整优化模型的关键超参数,最后基于误差倒数法组合得到短期负荷预测结果。以某地区电力负荷数据作为算例验证,结果表明所提的改进预测模型预测精度更高,且在克服历史数据缺失和拟合非工作日负荷曲线等方面具有优势。 展开更多
关键词 短期负荷预测 PROPHET 自组织映射-前馈 神经网络 时间序列
在线阅读 下载PDF
基于自组织竞争神经网络虚拟测风的分散式风电场超短期功率预测
3
作者 张小贝 李润 +2 位作者 王振福 徐峰 宋美洋 《电测与仪表》 北大核心 2025年第9期142-148,共7页
为充分降低分散式风电场超短期预测功率的误差,提出基于自组织竞争神经网络虚拟测风的分散式风电场超短期功率预测模型。从软硬件和数据流分析了分散式风电场功率预测系统架构,为模型建立提供基础。采用自组织竞争神经网络理论建立大型... 为充分降低分散式风电场超短期预测功率的误差,提出基于自组织竞争神经网络虚拟测风的分散式风电场超短期功率预测模型。从软硬件和数据流分析了分散式风电场功率预测系统架构,为模型建立提供基础。采用自组织竞争神经网络理论建立大型风电场的虚拟测风模型,以虚拟测风点测量数据,气温,天气类型,风向,湿度在内的预测特征集为输入数据,以超短期范围风机风速为输出数据构建网络,从而实现了基于若干个虚拟测风塔测量数据得到分散式风电场中不同风机的风速环境。进一步针对各个风机的参数数据进行广义误差分布最优化算法进行拟合,进而基于虚拟测风结果计算各个风机的超短期预测出力,通过某地区分散式风电场的超短期风电功率预测算例验证了所建立模型的有效性。 展开更多
关键词 风电功率 超短期预测 虚拟测风技术 自组织竞争神经网络 广义误差分布
在线阅读 下载PDF
城市固废焚烧过程神经网络控制研究综述
4
作者 汤健 田昊 +1 位作者 余文 乔俊飞 《自动化学报》 北大核心 2025年第9期1951-1973,共23页
城市固废焚烧(MSWI)已成为解决城市环境问题并实现可再生能源循环利用的主流技术,其对应系统具有参数多、耦合性强、非线性显著等特性,需采用先进过程控制技术以确保平稳高效的运行.鉴于此,进行面向MSWI过程神经网络控制(NNC)综述以弥... 城市固废焚烧(MSWI)已成为解决城市环境问题并实现可再生能源循环利用的主流技术,其对应系统具有参数多、耦合性强、非线性显著等特性,需采用先进过程控制技术以确保平稳高效的运行.鉴于此,进行面向MSWI过程神经网络控制(NNC)综述以弥补该领域的缺失和促进深入研究.首先,描述典型MSWI过程工艺,分析其控制问题与控制目标,明确控制复杂性,概述NNC及其在管理此类复杂系统方面的优势;其次,综述面向控制的机理与数据驱动焚烧炉模型;随后,简要分析和介绍非NNC控制器设计在MSWI过程的研究现状;接着,详细综述面向NNC的浅层和模糊控制器设计、网络参数、网络结构和事件触发在线更新算法以及稳定性分析的研究现状,并进行控制性能分析;然后,展望未来研究方向;最后,总结了本文在促进NNC向MSWI过程控制具身智能化发展中的贡献. 展开更多
关键词 城市固废焚烧 先进过程控制 神经网络控制 参数在线更新 结构自组织 事件驱动控制
在线阅读 下载PDF
基于主成分自组织神经网络法的测井曲线分层技术 被引量:3
5
作者 张强 胡志伟 +1 位作者 王毛毛 周成号 《地质与勘探》 CAS CSCD 北大核心 2024年第5期1013-1020,共8页
在砂岩型铀矿找矿工作中,提高测井岩性分层效率和精度至关重要。为提高砂岩型铀矿岩性分层效果,本文采用主成分分析法对多个测井曲线进行降维处理,将主成分分析法的第一主成分、第二主成分、第三主成分作为自组织神经网络的样本数据,进... 在砂岩型铀矿找矿工作中,提高测井岩性分层效率和精度至关重要。为提高砂岩型铀矿岩性分层效果,本文采用主成分分析法对多个测井曲线进行降维处理,将主成分分析法的第一主成分、第二主成分、第三主成分作为自组织神经网络的样本数据,进行自组织神经网络训练,将训练好的网络模型用于砂岩型铀矿岩性的自动化分层。实验结果显示:主成分自组织神经网络法岩性分层精度可达到85%以上,高于传统自组织神经网络算法78%的分层精度,具有更好的测井岩性分层效果。因此,主成分自组织神经网算法的岩性分层方法有效减少了输入样本的种类,简化了自组织神经网络结构,其自动化分层效果要优于传统的自组织神经网络算法。本文的研究结果表明,主成分自组织神经网算法在砂岩型铀矿领域岩性识别工作中具有较好的应用效果。 展开更多
关键词 测井曲线 自组织神经网络算法 主成分分析法 岩性分层 砂岩型铀矿
在线阅读 下载PDF
基于神经网络的6063铝型材挤压工艺多目标优化
6
作者 刘鹏程 彭炳锋 +3 位作者 刘寒龙 刘莹雪 孙立科 林高用 《中南大学学报(自然科学版)》 北大核心 2025年第3期881-890,共10页
对1种典型6063铝合金挤压型材金相进行分析。采用有限元数值模拟方法对该型材的挤压过程进行模拟。为了解决6063铝型材横截面组织不均匀问题,提出一种基于数值模拟和神经网络相结合的挤压温度均匀性多目标优化方法。基于GABP神经网络建... 对1种典型6063铝合金挤压型材金相进行分析。采用有限元数值模拟方法对该型材的挤压过程进行模拟。为了解决6063铝型材横截面组织不均匀问题,提出一种基于数值模拟和神经网络相结合的挤压温度均匀性多目标优化方法。基于GABP神经网络建立工艺参数(挤压速度、坯料温度、模具温度和挤压筒温度)和成形质量(型材出口横截面的平均温度T_(av)和温度标准差D_(SDT))的映射关系,基于NSGA-Ⅱ算法和Matlab软件平台,对挤压工艺参数进行优化,获得较佳的工艺参数组合。研究结果表明:铝型材不同区域的晶粒组织存在较明显差异;型材组织的不均匀性主要是挤出模口的型材温度不均匀所致;较佳的工艺参数组合是挤压速度为3.73mm/s、坯料温度为474.1℃、模具预热温度为469.9℃、挤压筒预热温度为456.8℃;与初始挤压工艺方案对比,采用优化的挤压工艺参数时,温度标准差DSDT从5.33℃下降到3.32℃。将这组最优工艺参数进行挤压生产验证,发现不同部位晶粒组织的均匀性大幅度提高。 展开更多
关键词 6063铝型材 组织均匀性 GABP神经网络 NSGA-Ⅱ算法 Qform软件
在线阅读 下载PDF
基于模糊神经网络的农用底盘轨迹跟踪研究
7
作者 代聪 唐兴隆 +1 位作者 张涛 李磊 《南方农机》 2025年第17期24-28,34,共6页
【目的】分析建立无人驾驶农用底盘运动学模型,消除不确定性对系统的影响,使得无人驾驶农用底盘的运动轨迹能够持续跟踪预定轨迹。【方法】针对无人驾驶农用底盘运动轨迹具有的时变、非线性及外部扰动等特性,设计出一种基于模糊神经网... 【目的】分析建立无人驾驶农用底盘运动学模型,消除不确定性对系统的影响,使得无人驾驶农用底盘的运动轨迹能够持续跟踪预定轨迹。【方法】针对无人驾驶农用底盘运动轨迹具有的时变、非线性及外部扰动等特性,设计出一种基于模糊神经网络控制算法的轨迹跟踪控制器。通过自适应律更新控制器增益参数消除不确定因素对系统的影响,并在MATLAB/Simulink中搭建运动仿真实验模型,对比分析所提算法与传统PID算法在误差、路径扰动、跟踪效果方面的表现。【结果】所设计的控制器能够迅速跟踪参考轨迹,在路径跟踪控制过程中具有收敛速度快、超调量小、控制稳定等特点;与传统PID控制方式相比,横向和纵向误差表现更优,系统具有更快的轨迹跟踪控制反应速度。【结论】该控制器对于移动农用底盘系统的实际应用场景,尤其是需要高精度导航和稳定性的场景,具有重要的意义,可以极大地提高系统的可靠性和实用性。 展开更多
关键词 农用底盘 轨迹跟踪 模糊神经网络 matlab 仿真
在线阅读 下载PDF
基于轻量化卷积神经网络的纬编针织物组织结构分类
8
作者 胡旭东 汤炜 +4 位作者 曾志发 汝欣 彭来湖 李建强 王博平 《纺织学报》 EI CAS CSCD 北大核心 2024年第5期60-69,共10页
为解决纬编针织物组织结构自动分类时现有方法计算量偏大的问题,基于轻量化卷积神经网络,提出了一种改进的纬编针织物组织结构分类方法。采集纬编针织物组织双面的图像,以准确判断其结构类型。在特征提取步骤中,引入了注意力机制模块,... 为解决纬编针织物组织结构自动分类时现有方法计算量偏大的问题,基于轻量化卷积神经网络,提出了一种改进的纬编针织物组织结构分类方法。采集纬编针织物组织双面的图像,以准确判断其结构类型。在特征提取步骤中,引入了注意力机制模块,修正各个层次特征在通道域和空间域的权重。构建的双分支网络架构能并行提取织物双面的特征信息。在分类阶段,采用了串行策略来融合高维特征向量,以确定纬编针织物组织所属类别。使用准确率、宏精确率、宏召回率以及宏F_(1)评估模型的性能,并统计了参数量和计算复杂度衡量模型的资源消耗。实验结果显示,对于纬编针织物特殊的结构特点,双分支网络架构具有很好的适应性。改进后的模型增强了不同组织间的特征区分度,在受到角度旋转、尺度改变、光照条件变化等干扰下,本文方法的分类准确率可达99.51%,且保持了较小的资源消耗。 展开更多
关键词 纬编针织物 组织结构分类 轻量化卷积神经网络 图像识别 双分支网络 注意力机制
在线阅读 下载PDF
群智结合级联神经网络在集群电子对抗中的应用
9
作者 肖世昂 束坤 +1 位作者 李迪 陈向坚 《现代雷达》 北大核心 2025年第8期63-70,共8页
通过集群平台挂载电子战设备对敌相控阵雷达进行反制是弥补单体对抗能力短板的重要战术手段之一。在实现对相控阵雷达工作状态及意图的群内综合辨识、预测并制定相应的干扰决策前,对群内个体掌握的同一辐射源信息进行交互与智能综合分... 通过集群平台挂载电子战设备对敌相控阵雷达进行反制是弥补单体对抗能力短板的重要战术手段之一。在实现对相控阵雷达工作状态及意图的群内综合辨识、预测并制定相应的干扰决策前,对群内个体掌握的同一辐射源信息进行交互与智能综合分析是其中不可或缺的环节。文中针对集群平台挂载电子战设备反制敌相控阵雷达时,现有方法存在的网络交互负担重、信息冗余、难以反映雷达行为特征及知识库规模庞大等问题,设计了基于群智结合神经网络进行信息融合的去中心化集群雷达对抗系统框架。该框架下,个体局部交互机制可自组织形成表征辐射源特征的最优子群。采用基于模型迁移的级联卷积神经网络方法,先单独训练群内个体神经网络分类器,再在子群交互中,个体获取其他个体网络权重和偏置与自身网络级联,实现迁移学习,综合表征辐射源特征;最后,通过仿真手段对涉及的算法可行性进行了验证。 展开更多
关键词 雷达对抗 群体智能 级联神经网络 自组织
在线阅读 下载PDF
基于BP神经网络PID控制器的农业温室系统仿真研究
10
作者 段科俊 李小丽 +2 位作者 金光哲 余侠 张扬 《南方农机》 2025年第6期18-22,共5页
【目的】传统控制方法存在控制精度低、系统输出不稳定、明显大滞后等问题,亟需探索一种适用于现代农业温室生产系统的合理有效的控制策略。【方法】首先,根据BP神经网络原理确定BP-PID控制器的模型;其次,结合不同的隐含层神经元计算公... 【目的】传统控制方法存在控制精度低、系统输出不稳定、明显大滞后等问题,亟需探索一种适用于现代农业温室生产系统的合理有效的控制策略。【方法】首先,根据BP神经网络原理确定BP-PID控制器的模型;其次,结合不同的隐含层神经元计算公式,确定不同数量的隐含层神经元节点,并通过MATLAB软件对不同隐含层神经元节点数量的BP-PID算法进行仿真;最后,分析BP神经网络中隐含层神经元节点数量对控制结果的影响,并确定仿真模型的隐含层神经元节点阈值区间。【结果】在3输入、3输出的BP-PID控制中,隐含层神经元节点较少时(q≤3),系统的响应曲线不够平滑,控制精度较低;隐含层神经元节点过多时(q≥8),系统响应曲线的平滑度较好,但控制精度难以进一步提升,超调现象也难以进一步改善。【结论】隐含层神经元节点q=6时具有较好的控制效果,虽然不同数量的隐含层神经元节点在控制系统中的效果不尽相同,但整体效果均优于常规PID控制,BP-PID控制适用于具有延时环节的一阶惯性温室系统。 展开更多
关键词 BP-PID 神经网络 隐含层 温室 matlab
在线阅读 下载PDF
基于自组织映射神经网络的淮河流域生态系统服务簇时空变化特征 被引量:12
11
作者 常耀文 吴迪 +3 位作者 李欢 刘霞 王蕴鹏 郭家瑜 《生态学报》 CAS CSCD 北大核心 2024年第11期4544-4557,共14页
生态系统服务簇的识别是区域生态系统服务管理与优化的关键。量化了2000、2010、2020年淮河流域产水量(WY),水源涵养(WC),土壤保持(SC),生境质量(HQ),水质净化(WP),净初级生产力(NPP)和碳储量(CS)7种生态系统服务。并基于自组织映射神... 生态系统服务簇的识别是区域生态系统服务管理与优化的关键。量化了2000、2010、2020年淮河流域产水量(WY),水源涵养(WC),土壤保持(SC),生境质量(HQ),水质净化(WP),净初级生产力(NPP)和碳储量(CS)7种生态系统服务。并基于自组织映射神经网络(SOFM)识别了生态系统服务簇,探讨了生态系统服务簇的时空变化特征。结果表明:(1)2000—2020年,WP,NPP与WC呈上升趋势,WC的增幅最大;CS与HQ呈下降趋势。淮河流域各生态系统服务具有时空异质性,生态系统服务高值区多位于西南部山区与东北部丘陵山地地区。(2)识别了5个生态系统服务簇:核心生态服务簇,WP服务簇,WY服务簇,NPP服务簇与生态过渡服务簇。核心生态服务簇与生态过渡服务簇的面积总体增加,流域西南部山区与东北部丘陵山地地区生态系统服务提升,2000—2020年,WY服务簇与NPP服务簇间的转移面积较大,WY服务簇面积减少达60.09%,NPP服务簇面积显著增加,2020年占整个流域面积的57.02%。研究结果不仅有助于清晰认识淮河流域生态系统服务簇的空间分布格局及动态变化,也为探索淮河流域可持续的生态系统管理与规划决策奠定了基础。 展开更多
关键词 生态系统服务 自组织映射神经网络(SOFM) 生态系统服务簇 淮河流域 InVEST模型
在线阅读 下载PDF
基于有效性分析的自组织模糊神经网络建模方法 被引量:1
12
作者 王雪峰 李文静 乔俊飞 《控制工程》 CSCD 北大核心 2024年第3期463-469,共7页
提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络... 提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络模型的有效性分析,通过累积触发的方式实现相应模糊规则的增加或删减,使网络模型在能够处理复杂非线性问题的同时降低其冗余性,使模型更为紧凑。采用梯度下降算法对网络模型进行训练。然后,对所提出的SOEFNN模型进行非线性系统仿真实验和污水处理过程中的出水生化需氧量预测建模,并与其他自组织模糊神经网络模型进行对比。仿真结果表明,所提出的SOEFNN模型能够很好地实现结构和参数的自适应调整,并且具有较好的逼近能力。 展开更多
关键词 有效性分析 自组织模糊神经网络 梯度下降算法 网络建模
在线阅读 下载PDF
基于自组织神经网络的EVD杂波抑制算法 被引量:1
13
作者 史家琪 杨明磊 +2 位作者 连昊 叶舟 徐光辉 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第5期46-57,共12页
强杂波环境下慢速运动目标的杂波抑制一直是雷达领域的研究难点,通过子空间分解法来抑制杂波是一种常用的方法,但传统子空间分解法依赖于过往经验选取杂波基、自适应性差。基于K-均值聚类的SVD杂波抑制算法弥补了上述缺陷,然而当慢速运... 强杂波环境下慢速运动目标的杂波抑制一直是雷达领域的研究难点,通过子空间分解法来抑制杂波是一种常用的方法,但传统子空间分解法依赖于过往经验选取杂波基、自适应性差。基于K-均值聚类的SVD杂波抑制算法弥补了上述缺陷,然而当慢速运动目标与杂波在多普勒谱上接近或混叠时,这种算法的特征集区分度大幅下降,聚类结果变得不稳定。为此提出了一种基于自组织神经网络的特征值分解杂波抑制算法。首先,深入分析慢速运动目标和杂波、噪声的差异,利用回波信号矩阵特征值分解后得到的特征值和特征向量,提取针对慢速运动目标和杂波区分度高的特征来构建特征集。其次,采用受初始值影响小、聚类结果稳定的自组织神经网络进行聚类,自适应选取构造杂波子空间的杂波基,最后通过正交子空间投影来抑制杂波。仿真和实测数据结果表明该算法能有效抑制强静止杂波和慢速杂波,实现对慢速运动目标的检测,算法具有较强的稳健性和工程实用性。 展开更多
关键词 慢速运动目标 杂波 特征值分解 自组织神经网络
在线阅读 下载PDF
应用随机森林与神经网络算法的足底软组织本构参数反演方法
14
作者 李烽韬 孙丽芳 +3 位作者 陶雅萍 杨鹏 纪猛强 桑建兵 《医用生物力学》 CAS CSCD 北大核心 2024年第3期476-481,共6页
目的 基于随机森林(random forest, RF)算法和反向传播(back propagation, BP)神经网络算法实现对足底软组织超弹性模型本构参数的预测,以提升本构参数获取方式的效率和准确性。方法 首先建立足底软组织球形压痕实验的有限元模型,并对... 目的 基于随机森林(random forest, RF)算法和反向传播(back propagation, BP)神经网络算法实现对足底软组织超弹性模型本构参数的预测,以提升本构参数获取方式的效率和准确性。方法 首先建立足底软组织球形压痕实验的有限元模型,并对球形压痕实验过程进行仿真,得到具有非线性关系的位移和压痕力的数据集。将数据集进行划分,得到训练集和测试集,分别对搭建好的RF和BP神经网络(BP neural network, BPNN)模型进行训练,通过实验数据对足底软组织本构参数进行预测。最后,引入均方误差(mean square error, MSE)和决定系数(R2)对模型的预测准确性进行评估,同时对比实验曲线验证模型的有效性。结果 利用RF和BPNN模型结合有限元仿真是确定足底软组织超弹性本构参数的有效、准确的方法。训练后的RF模型MSE达到1.370 2×10^(-3),R^(2)为0.982 9;BPNN模型MSE达到4.858 1×10^(-5),R^(2)为0.999 3。反求得到适用于仿真的足底软组织的超弹性本构参数,预测得到的两组本构参数的计算响应曲线与实验曲线吻合较好。结论 基于人工智能算法模型对足底软组织超弹性本构参数的预测精度很高,相关研究成果也可以应用于足底软组织其他力学特性的研究。同时,研究结果为足底软组织本构参数的获取提供新方法,有助于快速诊断足底软组织病变等临床问题。 展开更多
关键词 足底软组织 参数识别 BP神经网络 随机森林
在线阅读 下载PDF
基于自组织递归小波神经网络的污水处理过程多变量控制 被引量:2
15
作者 苏尹 杨翠丽 乔俊飞 《自动化学报》 EI CAS CSCD 北大核心 2024年第6期1199-1209,共11页
污水处理过程(Wastewater treatment process,WWTP)是一个包含多个生化反应的复杂过程,具有非线性和动态特性.因此,实现污水处理过程的精准控制是一项挑战.为解决这个问题,提出一种基于自组织递归小波神经网络(Selforganized recurrent ... 污水处理过程(Wastewater treatment process,WWTP)是一个包含多个生化反应的复杂过程,具有非线性和动态特性.因此,实现污水处理过程的精准控制是一项挑战.为解决这个问题,提出一种基于自组织递归小波神经网络(Selforganized recurrent wavelet neural network,SRWNN)的污水处理过程多变量控制.首先,针对污水处理过程的动态特性,根据小波基的激活强度设计一种自组织机制来动态调整递归小波神经网络控制器的结构,提高控制的性能.然后,采用结合自适应学习率的在线学习算法,实现控制器的参数学习.此外,通过李雅普诺夫稳定性定理证明此控制器的稳定性.最后,采用基准仿真平台进行仿真验证,实验结果表明,此控制方法可以有效提高污水处理过程的控制绝对误差积分(Integral of absolute error,IAE)和积分平方误差(Integral of squared error,ISE)的精度. 展开更多
关键词 神经网络控制 污水处理过程 自组织机制 多变量控制
在线阅读 下载PDF
基于自组织神经网络算法的低渗透砂岩孔隙结构自动分类 被引量:1
16
作者 路研 刘宗宾 +2 位作者 廖新武 李超 李扬 《地质科技通报》 CAS CSCD 北大核心 2024年第6期318-330,共13页
低渗透砂岩储层的孔隙系统复杂,孔隙-喉道大小分布多变,是决定储层宏观岩石物理性质和控制流体在砂岩中渗流行为的关键因素。以往的低渗透砂岩孔隙结构分级评价工作多基于孔隙-喉道大小分布的几何形态或参数回归分析,受人为因素干扰大,... 低渗透砂岩储层的孔隙系统复杂,孔隙-喉道大小分布多变,是决定储层宏观岩石物理性质和控制流体在砂岩中渗流行为的关键因素。以往的低渗透砂岩孔隙结构分级评价工作多基于孔隙-喉道大小分布的几何形态或参数回归分析,受人为因素干扰大,缺乏精确的分级评价标准。以渤海湾盆地G油田沙四上亚段低渗透砂岩储层为研究对象,综合运用岩相学分析、高压压汞、核磁共振及X射线CT扫描等技术手段,详细探讨了低渗透砂岩微观孔隙结构特征。在此基础上,选取了15个能够反映低渗透砂岩微观孔隙结构特征的储层评价参数,并采用无监督模式下的自组织映射神经网络算法将取心层段的70组岩心样本自动划分为4类孔隙结构。研究结果表明,Ⅰ类孔隙结构以大孔喉为主,中值喉道半径r50主要分布在0.38~2.35μm的范围内;孔喉连通性好,对渗透率贡献作用显著。Ⅱ类孔隙结构的渗流性能和连通性能仅次于Ⅰ类孔隙结构,可动流体孔隙度在2.76%~5.61%之间,中值喉道半径r50主要分布在0.01~0.23μm的范围内。Ⅲ类孔隙结构具有较好的孔喉连通性和较强的微观非均质性,储集和渗流性能与Ⅰ类和Ⅱ孔隙结构相比明显较差。Ⅳ型孔隙结构内小孔喉占主导,孔喉连通性差,不利于流体在砂岩中的渗流。基于自组织映射神经网络算法可以实现多参数情况下的孔隙结构类型自动分类。分类结果不受不准确的用户自定义信息的影响,并且对参与训练过程的参数数量没有限制,在基于多参数的孔隙结构分类方面应用效果显著。建立的基于自组织特征映射(self-organizing feature map,简称SOM)神经网络算法的孔隙结构分类评价标准,对于研究低渗透砂岩储层的微观渗流行为和储层质量评价意义重大。 展开更多
关键词 渤海湾盆地 低渗透砂岩 孔隙结构 自组织神经网络 无监督模式
在线阅读 下载PDF
基于自组织聚类和JS散度的RBF神经网络 被引量:2
17
作者 董镇林 伍世虔 +1 位作者 叶健 银开州 《计算机工程与设计》 北大核心 2024年第4期1062-1068,共7页
针对如何确定径向基函数(RBF)神经网络隐层结构这一问题进行研究,提出一种基于自组织聚类和JS散度的RBF神经网络。为解决K-means算法对初始值敏感的问题,提出基于距离的自组织初始聚类,将戴维森堡丁(DBI)指数作为准则函数,进一步提高聚... 针对如何确定径向基函数(RBF)神经网络隐层结构这一问题进行研究,提出一种基于自组织聚类和JS散度的RBF神经网络。为解决K-means算法对初始值敏感的问题,提出基于距离的自组织初始聚类,将戴维森堡丁(DBI)指数作为准则函数,进一步提高聚类精度,得到代表数据集分布特性的隐节点;为解决隐节点冗余和相似的问题,提出一种基于敏感度分析的隐节点删除方法和基于詹森-香农(JS)散度的隐节点合并方法。仿真结果验证了该算法的有效性。 展开更多
关键词 RBF神经网络 隐层结构 自组织聚类 K-MEANS算法 戴维森堡丁指数 敏感度分析 詹森-香农散度
在线阅读 下载PDF
基于混合双层自组织径向基函数神经网络的优化学习算法
18
作者 杨彦霞 王普 +2 位作者 高学金 高慧慧 齐泽洋 《北京工业大学学报》 CAS CSCD 北大核心 2024年第1期38-49,共12页
针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,H... 针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,Hb-SRBFNN-OL)算法。首先,将训练过程和测试过程集成到一个统一的框架中,规避过拟合或欠拟合问题。其次,基于进化学习机制,提出上下2层的交互式优化学习算法,上层基于网络复杂度和测试误差自组织调整网络结构,下层采用列文伯格-马夸尔特(Levenberg Marquardt,LM)算法作为优化器对自组织径向基函数神经网络(self-organizing radial basis function neural network,SO-RBFNN)的连接权值进行优化。最后,利用来自多个子网络的综合信息生成模型的最终输出,加速网络全局收敛。为验证所提方法的可行性,分别在多个分类和预测任务中进行了测试实验。结果表明,在与传统神经网络结构相似甚至更好的测试和分类精度下,该方法不仅能实现更快的训练收敛,而且能进化成更精简紧凑的径向基函数神经网络(radial basis function neural network,RBFNN)模型。尤其在污水处理过程中总磷的质量浓度预测实验中,测试集中均方根误差(root mean squared error,RMSE)最高可降低48.90%,实际场景实验结果验证了所提算法的精确性更佳且泛化能力更强。 展开更多
关键词 径向基函数神经网络(radial basis function neural network RBFNN) 自组织 列文伯格-马夸尔特(Levenberg Marquardt LM)算法 混合双层 优化学习 泛化性能
在线阅读 下载PDF
注意力改进的动态自组织模块化神经网络结构设计及应用
19
作者 张昭昭 潘浩然 朱应钦 《计算机科学》 CSCD 北大核心 2024年第S02期163-171,共9页
针对混沌时间序列的复杂性和非线性特点,提出了一种专注于此类挑战的新型神经网络模型,即注意力改进的动态自组织模块化神经网络模型(ADAMNN)。该模型基于分而治之的思想,通过注意力机制计算不同子网络与输入数据的相似度,并利用层次聚... 针对混沌时间序列的复杂性和非线性特点,提出了一种专注于此类挑战的新型神经网络模型,即注意力改进的动态自组织模块化神经网络模型(ADAMNN)。该模型基于分而治之的思想,通过注意力机制计算不同子网络与输入数据的相似度,并利用层次聚类自适应地划分子网络。随后,采用基于层次聚类的动态生长机制,对子网络簇进行增减,最后通过激活的子网络簇对输入样本进行在线学习;同时,结合传统的集成输出方法,提出了一种基于注意力机制的子网络加权集成输出方法。最终分别在Mackey-Glass时间序列、M-G快时变时间序列、非线性系统辨识、煤矿开采过程中在瓦斯浓度数据集上进行了实验,ADAMNN展现出了实时更新子网络中心、动态构建子网络簇的能力,而且与基于欧几里得空间的动态自适应模块化神经网络相比,预测准确度提高了约40%。 展开更多
关键词 模块化神经网络 自组织神经网络 混沌时间序列 注意力机制 层次聚类
在线阅读 下载PDF
基于RBF神经网络滑模控制的卷纸纠偏系统 被引量:1
20
作者 张继红 《中国造纸学报》 CAS CSCD 北大核心 2024年第1期107-113,共7页
设计了采用RBF神经网络控制的伺服纠偏控制系统,通过建立其动力学模型,运用MATLAB/Simulink仿真软件仿真,并进行实验验证,分析系统动态性能,得到响应曲线。结果表明,在拉纸速度65 mm/s下,跑偏量从1.5 mm降低到0.55 mm,该伺服系统位移和... 设计了采用RBF神经网络控制的伺服纠偏控制系统,通过建立其动力学模型,运用MATLAB/Simulink仿真软件仿真,并进行实验验证,分析系统动态性能,得到响应曲线。结果表明,在拉纸速度65 mm/s下,跑偏量从1.5 mm降低到0.55 mm,该伺服系统位移和速度跟踪误差均较小。 展开更多
关键词 卷纸 纠偏控制 RBF神经网络 滑模控制 matlab/SIMULINK 动态性能
在线阅读 下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部