The removal mechanism is of importance to the grinding of hard and brittle ceramic materials. It is more suitable to analyze the material removal during ceramics honing processes by means of indention fracture approac...The removal mechanism is of importance to the grinding of hard and brittle ceramic materials. It is more suitable to analyze the material removal during ceramics honing processes by means of indention fracture approach. There are two honing characteristics different from grinding, the honing incidental tensile stresses and the crosshatch pattern. The stresses may influence material removal of brittle ceramics with lower tensile strength. In addition, the criss-cross cutting pattern on a bore known as crosshatch may also have its effect on the material removal of ceramics. The material removal of alumina is analyzed on the basis of honing characteristics, honing incidental tensile stresses and crosshatch pattern. By means of indentation fracture mechanics of brittle solids, the theoretical analysis of stress intensity factor and the crack response prove that honing incidental tensile stresses can increase the stress intensity factor of honing cracks and decrease the grinding stresses. So, the fracture criterion for crack propagation can be met easily. Therfore, it is possible to machine ceramic materials with small grinding forces in honing processes. The alumina honing experiments show that material at crosshatch intersecting point is removed by way of chipping which is similar to the edge-crumbled of ceramics. For brittle ceramics with lower tensile strength, such as Al 2O 3, SiO 2, the influences of the honing incidental tensile stresses and the crosshatch pattern on material removal are bigger than that of ceramics with relative higher toughness, such as ZrO 2 and Si 3N 4. Hence, the honing of Al 2O 3, SiO 2, is superior in cutting ability to the grinding. The large stock removal of brittle ceramic materials can be obtained through higher honing pressures. The increase in honing pressures can increase intensity factor of honing cracks, decrease the grinding stresses, and remarkably improve material removal rate. The researches show that honing is an efficient bore machining operation for brittle ceramics.展开更多
As a non-contact ultra-precision machining method,abrasive water jet polishing(AWJP)has signi-ficant application in optical elements processing due to its stable tool influence function(TIF),no subsurface damage and s...As a non-contact ultra-precision machining method,abrasive water jet polishing(AWJP)has signi-ficant application in optical elements processing due to its stable tool influence function(TIF),no subsurface damage and strong adaptability to workpiece shapes.In this study,the effects of jet pressure,nozzle diameter and impinging angle on the distribution of pressure,velocity and wall shear stress in the polishing flow field were systematically analyzed by computational fluid dynamics(CFD)simulation.Based on the Box-Behnken experimental design,a response surface regression model was constructed to investigate the influence mech-anism of process parameters on material removal rate(MRR)and surface roughness(Ra)of fused silica.And experimental results showed that increasing jet pressure and nozzle diameter significantly improved MRR,consistent with shear stress distribution revealed by CFD simulations.However,increasing jet pressure and impinging angle caused higher Ra values,which was unfavorable for surface quality improvement.Genetic algorithm(GA)was used for multi-objective optimization to establish Pareto solutions,achieving concurrent optimization of polishing efficiency and surface quality.A parameter combination of 2 MPa jet pressure,0.3 mm nozzle diameter,and 30°impinging angle achieved MRR of 169.05μm^(3)/s and Ra of 0.50 nm.Exper-imental verification showed prediction errors of 4.4%(MRR)and 3.8%(Ra),confirming the model’s reliabil-ity.This parameter optimization system provides theoretical basis and technical support for ultra-precision polishing of complex curved optical components.展开更多
Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energ...Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energy utilization efficiency of ED-milling process, unstable arc discharge and stable arc discharge combined with normal discharge were implemented for material removal by adjusting servo control strategy. The influence of electrode rotating speed and dielectric flushing pressure on machining performance was investigated by experiments. It was found that the rotating of electrode could move the position of discharge plasma channel, and high pressure flushing could wash melted debris out the discharge gap effectively. Both electrode rotating motion and high pressure flushing are contributed to the improvement of machining efficiency.展开更多
This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes...This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes are involved simultaneously i.e.spark erosion,chemical etching,and abrasive grinding for removal of material while the classical electrochemical discharge machining process involves double actions i.e.spark erosion,and chemical etching.The powder-mixed electrolyte process resulted in rapid material removal along with a better surface finish as compared to the classical microelectrochemical discharge machining(MECDM).Further,the results are optimized through a multiobjective optimization approach and study of the surface topography of the hole wall surface obtained at optimized parameters.In the selected range of experimental parameters,PMECDM shows a higher material removal rate(MRR) and lower surface roughness(R_(a))(MRR:2.8 mg/min and R_(a) of 0.61 μm) as compared to the MECDM process(MRR:2.01 mg/min and corresponding Raof 1.11 μm).A detailed analysis of the results is presented in this paper.展开更多
Ultrasonic machining (USM) is considered as an effective method for machining hard and brittle materials such as glass, engineering ceramics, semiconductors, diamonds, metal composites and so on. However, the low mate...Ultrasonic machining (USM) is considered as an effective method for machining hard and brittle materials such as glass, engineering ceramics, semiconductors, diamonds, metal composites and so on. However, the low material removal rate due to using abrasive slurry limits further application of USM. Rotary ultrasonic machining (rotary USM) superimposes rotational movement on the tool head that vibrates at ultrasonic frequency (20 kHz) simultaneously. The tool is made of mild steel coated or bonded with diamond abrasive. Therefore, abrasive slurry is abandoned and coolant is used to carry debris out of working area. Compared with USM, rotary USM can obtain much higher material removal rate, deep holes, and fine precision, which leads to its further application. Combined with CNC technology, rotary USM can be used to conduct contour machining of hard and brittle materials. In this paper, the movement of abrasive particles in tool tip of rotary ultrasonic machining is analyzed. The impacting and grinding of abrasive in tool tip to machined surface are considered as main factors to material removal rate. The process of crack forming and growing in one loading and unloading cycle can be described as following stages: a) When abrasive particle acts the pressure on work-piece, the macro cracks in periphery of contact area are exerted increasing tensile stress. b) As the tensile stress increase to the critical of material tension, the one of cracks in periphery of contact area begins to propagate around contact area and develop beneath the surface to certain depth. c) Indentation area varies with increasing of load, the circle crack around contact area steadily or dynamical propagates towards inside of work-piece. d) As tensile stress in crack increases to critical of crack steady failure, circle crack suddenly becomes conic crack. e) Further increase load, the crack continues to grow while contact area is surrounded by conic cracks. f) During unloading, conic crack begins to close, some of cracks continue their extension towards the surface and forms a circle groove. The mathematical model for material removal rate shows that the factors affecting on material removal rate are static load, grid and concentration of abrasive, mechanical properties of machined materials, rotational speed of tool and feed speed of work-piece.展开更多
文摘The removal mechanism is of importance to the grinding of hard and brittle ceramic materials. It is more suitable to analyze the material removal during ceramics honing processes by means of indention fracture approach. There are two honing characteristics different from grinding, the honing incidental tensile stresses and the crosshatch pattern. The stresses may influence material removal of brittle ceramics with lower tensile strength. In addition, the criss-cross cutting pattern on a bore known as crosshatch may also have its effect on the material removal of ceramics. The material removal of alumina is analyzed on the basis of honing characteristics, honing incidental tensile stresses and crosshatch pattern. By means of indentation fracture mechanics of brittle solids, the theoretical analysis of stress intensity factor and the crack response prove that honing incidental tensile stresses can increase the stress intensity factor of honing cracks and decrease the grinding stresses. So, the fracture criterion for crack propagation can be met easily. Therfore, it is possible to machine ceramic materials with small grinding forces in honing processes. The alumina honing experiments show that material at crosshatch intersecting point is removed by way of chipping which is similar to the edge-crumbled of ceramics. For brittle ceramics with lower tensile strength, such as Al 2O 3, SiO 2, the influences of the honing incidental tensile stresses and the crosshatch pattern on material removal are bigger than that of ceramics with relative higher toughness, such as ZrO 2 and Si 3N 4. Hence, the honing of Al 2O 3, SiO 2, is superior in cutting ability to the grinding. The large stock removal of brittle ceramic materials can be obtained through higher honing pressures. The increase in honing pressures can increase intensity factor of honing cracks, decrease the grinding stresses, and remarkably improve material removal rate. The researches show that honing is an efficient bore machining operation for brittle ceramics.
文摘As a non-contact ultra-precision machining method,abrasive water jet polishing(AWJP)has signi-ficant application in optical elements processing due to its stable tool influence function(TIF),no subsurface damage and strong adaptability to workpiece shapes.In this study,the effects of jet pressure,nozzle diameter and impinging angle on the distribution of pressure,velocity and wall shear stress in the polishing flow field were systematically analyzed by computational fluid dynamics(CFD)simulation.Based on the Box-Behnken experimental design,a response surface regression model was constructed to investigate the influence mech-anism of process parameters on material removal rate(MRR)and surface roughness(Ra)of fused silica.And experimental results showed that increasing jet pressure and nozzle diameter significantly improved MRR,consistent with shear stress distribution revealed by CFD simulations.However,increasing jet pressure and impinging angle caused higher Ra values,which was unfavorable for surface quality improvement.Genetic algorithm(GA)was used for multi-objective optimization to establish Pareto solutions,achieving concurrent optimization of polishing efficiency and surface quality.A parameter combination of 2 MPa jet pressure,0.3 mm nozzle diameter,and 30°impinging angle achieved MRR of 169.05μm^(3)/s and Ra of 0.50 nm.Exper-imental verification showed prediction errors of 4.4%(MRR)and 3.8%(Ra),confirming the model’s reliabil-ity.This parameter optimization system provides theoretical basis and technical support for ultra-precision polishing of complex curved optical components.
基金Project(MSV-2013-09)supported by State Key Laboratory of Mechanical System and Vibration,China
文摘Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energy utilization efficiency of ED-milling process, unstable arc discharge and stable arc discharge combined with normal discharge were implemented for material removal by adjusting servo control strategy. The influence of electrode rotating speed and dielectric flushing pressure on machining performance was investigated by experiments. It was found that the rotating of electrode could move the position of discharge plasma channel, and high pressure flushing could wash melted debris out the discharge gap effectively. Both electrode rotating motion and high pressure flushing are contributed to the improvement of machining efficiency.
文摘This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes are involved simultaneously i.e.spark erosion,chemical etching,and abrasive grinding for removal of material while the classical electrochemical discharge machining process involves double actions i.e.spark erosion,and chemical etching.The powder-mixed electrolyte process resulted in rapid material removal along with a better surface finish as compared to the classical microelectrochemical discharge machining(MECDM).Further,the results are optimized through a multiobjective optimization approach and study of the surface topography of the hole wall surface obtained at optimized parameters.In the selected range of experimental parameters,PMECDM shows a higher material removal rate(MRR) and lower surface roughness(R_(a))(MRR:2.8 mg/min and R_(a) of 0.61 μm) as compared to the MECDM process(MRR:2.01 mg/min and corresponding Raof 1.11 μm).A detailed analysis of the results is presented in this paper.
文摘Ultrasonic machining (USM) is considered as an effective method for machining hard and brittle materials such as glass, engineering ceramics, semiconductors, diamonds, metal composites and so on. However, the low material removal rate due to using abrasive slurry limits further application of USM. Rotary ultrasonic machining (rotary USM) superimposes rotational movement on the tool head that vibrates at ultrasonic frequency (20 kHz) simultaneously. The tool is made of mild steel coated or bonded with diamond abrasive. Therefore, abrasive slurry is abandoned and coolant is used to carry debris out of working area. Compared with USM, rotary USM can obtain much higher material removal rate, deep holes, and fine precision, which leads to its further application. Combined with CNC technology, rotary USM can be used to conduct contour machining of hard and brittle materials. In this paper, the movement of abrasive particles in tool tip of rotary ultrasonic machining is analyzed. The impacting and grinding of abrasive in tool tip to machined surface are considered as main factors to material removal rate. The process of crack forming and growing in one loading and unloading cycle can be described as following stages: a) When abrasive particle acts the pressure on work-piece, the macro cracks in periphery of contact area are exerted increasing tensile stress. b) As the tensile stress increase to the critical of material tension, the one of cracks in periphery of contact area begins to propagate around contact area and develop beneath the surface to certain depth. c) Indentation area varies with increasing of load, the circle crack around contact area steadily or dynamical propagates towards inside of work-piece. d) As tensile stress in crack increases to critical of crack steady failure, circle crack suddenly becomes conic crack. e) Further increase load, the crack continues to grow while contact area is surrounded by conic cracks. f) During unloading, conic crack begins to close, some of cracks continue their extension towards the surface and forms a circle groove. The mathematical model for material removal rate shows that the factors affecting on material removal rate are static load, grid and concentration of abrasive, mechanical properties of machined materials, rotational speed of tool and feed speed of work-piece.