The robust guaranteed cost filtering problem for a dass of linear uncertain stochastic systems with time delays is investigated. The system under study involves time delays, jumping parameters and Brownian motions. Th...The robust guaranteed cost filtering problem for a dass of linear uncertain stochastic systems with time delays is investigated. The system under study involves time delays, jumping parameters and Brownian motions. The transition of the jumping parameters in systems is governed by a finite-state Markov process. The objective is to design linear memoryless filters such that for all uncertainties, the resulting augmented system is robust stochastically stable independent of delays and satisfies the proposed guaranteed cost performance. Based on stability theory in stochastic differential equations, a sufficient condition on the existence of robust guaranteed cost filters is derived. Robust guaranteed cost filters are designed in terms of linear matrix inequalities. A convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters.展开更多
Robust LQG problems of discrete-time Markovian jump systems with uncertain noises are investigated. The problem addressed is the construction of perturbation upper bounds on the uncertain noise covariances so as to gu...Robust LQG problems of discrete-time Markovian jump systems with uncertain noises are investigated. The problem addressed is the construction of perturbation upper bounds on the uncertain noise covariances so as to guarantee that the deviation of the control performance remains within the precision prescribed in actual problems. Furthermore, this regulator is capable of minimizing the worst performance in an uncertain case. A numerical example is exploited to show the validity of the method.展开更多
The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentia...The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach.展开更多
The exponential stability in mean square and stabiliza- tion problems for It& stochastic switched systems with multiple time-delays are investigated. The system possesses the norm- bounded uncertainties and Markovian...The exponential stability in mean square and stabiliza- tion problems for It& stochastic switched systems with multiple time-delays are investigated. The system possesses the norm- bounded uncertainties and Markovian jumping parameters. By using an effective descriptor model transformation of the system and applying Ito's differential formula and Moon's inequality for bounding cross terms, a new delay-dependent sufficient condi- tion is derived in terms of linear matrix inequalities, and its states feedback controller is designed. Numerical examples are given to illustrate the efficiency and less conservation of the results.展开更多
The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensure...The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensures robust stochastic stability while achieving a prescribed H∞ performance level of the resulting filtering error system, for all admissible uncertainties. The key features of the approach include the introduction of a new type of stochastic Lyapunov functional and some free weighting matrix variables. Sufficient conditions for the solvability of this problem are obtained in terms of a set of linear matrix inequalities. Numerical examples are provided to demonstrate the reduced conservatism of the proposed approach.展开更多
The robust H∞ control problems for stochastic fuzzy neutral Markov jump systems(MJSs) with parameters uncertainties and multiple time-delays are considered.The delays are respectively considered as constant and tim...The robust H∞ control problems for stochastic fuzzy neutral Markov jump systems(MJSs) with parameters uncertainties and multiple time-delays are considered.The delays are respectively considered as constant and time varying,and the uncertain parameters are assumed to be norm bounded.By means of Takagi-Sugeno fuzzy models,the overall closed-loop fuzzy dynamics are constructed through selected membership functions.By selecting the appropriate Lyapunov-Krasovskii functions,the sufficient condition is given such that the uncertain fuzzy neutral MJSs are stochastically stability for all admissible uncertainties and satisfies the given H∞ control index.The stability and H∞ control criteria are formulated in the form of linear matrix inequalities,which can be easily checked in practice.Practical examples illustrate the effectiveness of the developed techniques.展开更多
This paper is concerned with the robust stabilization problem of networked control systems with stochastic packet dropouts and uncertain parameters. Considering the stochastic packet dropout occuring in two channels b...This paper is concerned with the robust stabilization problem of networked control systems with stochastic packet dropouts and uncertain parameters. Considering the stochastic packet dropout occuring in two channels between the sensor and the controller, and between the controller and the actuator, networked control systems are modeled as the Markovian jump linear system with four operation modes. Based on this model, the necessary and sufficient conditions for the mean square stability of the deterministic networked control systems and uncertain networked control systems are given by using the theory of the Markovian jump linear system, and corresponding controller design procedures are proposed via the cone complementarity linearization method. Finally, the numerical example and simulations are given to illustrate the effectiveness of the proposed results.展开更多
This paper deals with analysis and synthesis problems of spatially interconnected systems where communicated information may get lost between subsystems. Spatial shift operator and temporal forward shift operator are ...This paper deals with analysis and synthesis problems of spatially interconnected systems where communicated information may get lost between subsystems. Spatial shift operator and temporal forward shift operator are introduced to model the interconnected systems as discrete time-space multidimensional linear systems with Markovian jumping parameters which reflect the state of communication channels. To ensure the whole system's well-posedness and mean square stability for a given packet loss rate, a condition is derived through analysis. Then a procedure of designing distributed dynamic output feedback controllers is proposed. The controllers have the same structure as the plants and are solved within the linear matrix inequality (LMI) framework. Finally, we apply these results to study the effect of communication losses on the multiple vehicle platoon control system, which further illustrates the effectiveness of the proposed model and method.展开更多
文摘The robust guaranteed cost filtering problem for a dass of linear uncertain stochastic systems with time delays is investigated. The system under study involves time delays, jumping parameters and Brownian motions. The transition of the jumping parameters in systems is governed by a finite-state Markov process. The objective is to design linear memoryless filters such that for all uncertainties, the resulting augmented system is robust stochastically stable independent of delays and satisfies the proposed guaranteed cost performance. Based on stability theory in stochastic differential equations, a sufficient condition on the existence of robust guaranteed cost filters is derived. Robust guaranteed cost filters are designed in terms of linear matrix inequalities. A convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters.
文摘Robust LQG problems of discrete-time Markovian jump systems with uncertain noises are investigated. The problem addressed is the construction of perturbation upper bounds on the uncertain noise covariances so as to guarantee that the deviation of the control performance remains within the precision prescribed in actual problems. Furthermore, this regulator is capable of minimizing the worst performance in an uncertain case. A numerical example is exploited to show the validity of the method.
基金Supported by National Natural Science Foundation of China(61174121, 61121003, 61203083) the Research Fund for the Doctoral Program of Higher Education of China Doctoral Foundation of University of Jinan (XBS1242)
基金Supported by National High Technology Research and Development Program of China (863 Program) (2008AA042902), National Natural Science Foundation of P. R. China (60736021), and National Creative Research Groups Science Foundation of China (60721061)
基金Supported by National Natural Science Foundation of China (60704007 60774038) the Key Scientific and Technological Project of Anhui Province (08010202038) the Science and Technological Fund of Anhui Province for Outstanding Youth
文摘The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach.
文摘The exponential stability in mean square and stabiliza- tion problems for It& stochastic switched systems with multiple time-delays are investigated. The system possesses the norm- bounded uncertainties and Markovian jumping parameters. By using an effective descriptor model transformation of the system and applying Ito's differential formula and Moon's inequality for bounding cross terms, a new delay-dependent sufficient condi- tion is derived in terms of linear matrix inequalities, and its states feedback controller is designed. Numerical examples are given to illustrate the efficiency and less conservation of the results.
文摘The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensures robust stochastic stability while achieving a prescribed H∞ performance level of the resulting filtering error system, for all admissible uncertainties. The key features of the approach include the introduction of a new type of stochastic Lyapunov functional and some free weighting matrix variables. Sufficient conditions for the solvability of this problem are obtained in terms of a set of linear matrix inequalities. Numerical examples are provided to demonstrate the reduced conservatism of the proposed approach.
基金supported by the National Natural Science Foundation of China (6097400160904045)+2 种基金the National Natural Science Foundation of Jiangsu Province (BK2009068)the Six Projects Sponsoring Talent Summits of Jiangsu Provincethe Program for Postgraduate Scientific Research and Innovation of Jiangsu Province
文摘The robust H∞ control problems for stochastic fuzzy neutral Markov jump systems(MJSs) with parameters uncertainties and multiple time-delays are considered.The delays are respectively considered as constant and time varying,and the uncertain parameters are assumed to be norm bounded.By means of Takagi-Sugeno fuzzy models,the overall closed-loop fuzzy dynamics are constructed through selected membership functions.By selecting the appropriate Lyapunov-Krasovskii functions,the sufficient condition is given such that the uncertain fuzzy neutral MJSs are stochastically stability for all admissible uncertainties and satisfies the given H∞ control index.The stability and H∞ control criteria are formulated in the form of linear matrix inequalities,which can be easily checked in practice.Practical examples illustrate the effectiveness of the developed techniques.
基金supported by the National Natural Science Foundation of China (60574082,60804027)
文摘This paper is concerned with the robust stabilization problem of networked control systems with stochastic packet dropouts and uncertain parameters. Considering the stochastic packet dropout occuring in two channels between the sensor and the controller, and between the controller and the actuator, networked control systems are modeled as the Markovian jump linear system with four operation modes. Based on this model, the necessary and sufficient conditions for the mean square stability of the deterministic networked control systems and uncertain networked control systems are given by using the theory of the Markovian jump linear system, and corresponding controller design procedures are proposed via the cone complementarity linearization method. Finally, the numerical example and simulations are given to illustrate the effectiveness of the proposed results.
文摘This paper deals with analysis and synthesis problems of spatially interconnected systems where communicated information may get lost between subsystems. Spatial shift operator and temporal forward shift operator are introduced to model the interconnected systems as discrete time-space multidimensional linear systems with Markovian jumping parameters which reflect the state of communication channels. To ensure the whole system's well-posedness and mean square stability for a given packet loss rate, a condition is derived through analysis. Then a procedure of designing distributed dynamic output feedback controllers is proposed. The controllers have the same structure as the plants and are solved within the linear matrix inequality (LMI) framework. Finally, we apply these results to study the effect of communication losses on the multiple vehicle platoon control system, which further illustrates the effectiveness of the proposed model and method.