波束内目标与诱饵的参数估计是导引头正确实现目标分选、完成波束指向调整与精确跟踪的必要条件。目标与诱饵的"紧密接近"导致接收回波混叠,使得常规参数测量与估计方法失效。基于实际采样处理中目标回波能量会"溢出&qu...波束内目标与诱饵的参数估计是导引头正确实现目标分选、完成波束指向调整与精确跟踪的必要条件。目标与诱饵的"紧密接近"导致接收回波混叠,使得常规参数测量与估计方法失效。基于实际采样处理中目标回波能量会"溢出"到相邻匹配滤波采样点这一信号模型,通过贝叶斯原理从观测的条件似然以及未知参数的先验分布获取待估计参数的后验概率分布,采用Markov Chain Monte Carlo(MCMC)方法中的Metropolis-Hastings(M-H)抽样算法联合估计目标与诱饵的相关参数,并根据拖曳式诱饵干扰对抗的特点对M-H抽样进行了改进。各种典型干扰条件及动态攻击场景下的仿真试验表明了本文方法的有效性。展开更多
弹道导弹在再入过程中为了提高自身突防能力往往伴随着分导现象。由于分导弹头数目未知,距离目标近且再入速度非常相近,使其以团状形态运动,在未知导弹任何先验信息前提下如何对分导弹头进行快速关联已成为亟待解决的难题。该文提出了...弹道导弹在再入过程中为了提高自身突防能力往往伴随着分导现象。由于分导弹头数目未知,距离目标近且再入速度非常相近,使其以团状形态运动,在未知导弹任何先验信息前提下如何对分导弹头进行快速关联已成为亟待解决的难题。该文提出了一种改进的实时滑窗马尔可夫链-蒙特卡洛(Markov Chain Monte Carlo,MCMC)次优数据关联算法,它应用蒙特卡洛采样方法对监控区域的测量集合进行组合优化,获得最大的后验概率密度进而逼近马氏链的平稳分布。该算法结合弹头分导实际情况,重新分配关联假设权值并优化了继承性,极大地减小了关联时间。仿真结果表明该算法与经典的多假设算法相比,关联概率随着目标密集程度增加而显著提高,并且计算量远小于多假设算法。展开更多
为提高水文模型参数识别的可靠性,融合自回归模型与马尔可夫链-蒙特卡洛方法(auto regressive model based modified Markov Chain-Monte Carlo,AR-MCMC),利用自回归模型刻画残差序列的自相关性,修正MCMC方法中的残差协方差矩阵。通过...为提高水文模型参数识别的可靠性,融合自回归模型与马尔可夫链-蒙特卡洛方法(auto regressive model based modified Markov Chain-Monte Carlo,AR-MCMC),利用自回归模型刻画残差序列的自相关性,修正MCMC方法中的残差协方差矩阵。通过新疆提孜那甫河流域融雪径流模型(SRM)的案例分析发现:融雪径流模拟的残差序列具有显著的自相关性;修正残差协方差矩阵后,边缘似然值更大;综合考虑多项评价指标,AR-MCMC方法在识别期与验证期推求的预测区间均优于MCMC方法;对比2种方法在识别期与验证期的纳什系数,采用AR-MCMC方法依次为0.86、0.89,而采用MCMC方法依次为0.84、0.87,即AR-MCMC方法获取的模型拟合效果更好。分析结果表明,相对于传统的MCMC方法,AR-MCMC方法能够更好地对研究区融雪径流过程进行模拟预测。展开更多
文摘波束内目标与诱饵的参数估计是导引头正确实现目标分选、完成波束指向调整与精确跟踪的必要条件。目标与诱饵的"紧密接近"导致接收回波混叠,使得常规参数测量与估计方法失效。基于实际采样处理中目标回波能量会"溢出"到相邻匹配滤波采样点这一信号模型,通过贝叶斯原理从观测的条件似然以及未知参数的先验分布获取待估计参数的后验概率分布,采用Markov Chain Monte Carlo(MCMC)方法中的Metropolis-Hastings(M-H)抽样算法联合估计目标与诱饵的相关参数,并根据拖曳式诱饵干扰对抗的特点对M-H抽样进行了改进。各种典型干扰条件及动态攻击场景下的仿真试验表明了本文方法的有效性。
文摘针对混凝土坝材料力学参数反演中存在大量不确定性问题,提出了混凝土重力坝坝体弹性模量与坝基变形模量的MCMC随机反演法。将坝体及坝基变形模量参数视为随机变量,基于Bayesian理论,利用无似然函数的马尔可夫链蒙特卡罗方法(Markov chain Monte Carlo(MCMC)without likelihoods)进行随机参数后验分布抽样。通过平稳后的马尔可夫链得到参数后验分布的随机样本,进而得到对应的期望值和标准差。以龙滩高混凝土重力坝为例,结合典型断面的二维平面有限元模型,采用无似然函数的MCMC算法对坝体、坝基变形模量进行了随机反演,得出所需反演参数(坝体弹性模量、坝基变形模量)的分布;分析了坝体、坝基变形模量分布的统计特性与观测值波动之间的关系,得出后验分布变异性与观测值离散性呈正相关关系。
文摘弹道导弹在再入过程中为了提高自身突防能力往往伴随着分导现象。由于分导弹头数目未知,距离目标近且再入速度非常相近,使其以团状形态运动,在未知导弹任何先验信息前提下如何对分导弹头进行快速关联已成为亟待解决的难题。该文提出了一种改进的实时滑窗马尔可夫链-蒙特卡洛(Markov Chain Monte Carlo,MCMC)次优数据关联算法,它应用蒙特卡洛采样方法对监控区域的测量集合进行组合优化,获得最大的后验概率密度进而逼近马氏链的平稳分布。该算法结合弹头分导实际情况,重新分配关联假设权值并优化了继承性,极大地减小了关联时间。仿真结果表明该算法与经典的多假设算法相比,关联概率随着目标密集程度增加而显著提高,并且计算量远小于多假设算法。
文摘为提高水文模型参数识别的可靠性,融合自回归模型与马尔可夫链-蒙特卡洛方法(auto regressive model based modified Markov Chain-Monte Carlo,AR-MCMC),利用自回归模型刻画残差序列的自相关性,修正MCMC方法中的残差协方差矩阵。通过新疆提孜那甫河流域融雪径流模型(SRM)的案例分析发现:融雪径流模拟的残差序列具有显著的自相关性;修正残差协方差矩阵后,边缘似然值更大;综合考虑多项评价指标,AR-MCMC方法在识别期与验证期推求的预测区间均优于MCMC方法;对比2种方法在识别期与验证期的纳什系数,采用AR-MCMC方法依次为0.86、0.89,而采用MCMC方法依次为0.84、0.87,即AR-MCMC方法获取的模型拟合效果更好。分析结果表明,相对于传统的MCMC方法,AR-MCMC方法能够更好地对研究区融雪径流过程进行模拟预测。