A novel grey Markov chain predictive model is discussed to reduce drift influence on the output of fiber optical gyroscopes (FOGs) and to improve FOGs' measurement precision. The proposed method possesses advantag...A novel grey Markov chain predictive model is discussed to reduce drift influence on the output of fiber optical gyroscopes (FOGs) and to improve FOGs' measurement precision. The proposed method possesses advantages of grey model and Markov chain. It makes good use of dynamic modeling idea of the grey model to predict general trend of original data. Then according to the trend, states are divided so that it can overcome the disadvantage of high computational cost of state transition probability matrix in Markov chain. Moreover, the presented approach expands the applied scope of the grey model and makes it be fit for prediction of random data with bigger fluctuation. The numerical results of real drift data from a certain type FOG verify the effectiveness of the proposed grey Markov chain model powerfully. The Markov chain is also investigated to provide a comparison with the grey Markov chain model. It is shown that the hybrid grey Markov chain prediction model has higher modeling precision than Markov chain itself, which prove this proposed method is very applicable and effective.展开更多
A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is eq...A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1).展开更多
为提高智能网联(connected and automated,CA)卡车、小车及人工驾驶卡车、小车的混合流道路通行能力,提出基于排强度和渗透率的CA车辆单独编队和合作编队策略.分别设计两种策略下混合流车辆跟驰模式,推导出基于改进Markov模型,涵盖CA车...为提高智能网联(connected and automated,CA)卡车、小车及人工驾驶卡车、小车的混合流道路通行能力,提出基于排强度和渗透率的CA车辆单独编队和合作编队策略.分别设计两种策略下混合流车辆跟驰模式,推导出基于改进Markov模型,涵盖CA车辆渗透率和排强度的车辆状态转移概率;分析两种策略下CA车辆队列分布,建立各策略下的混合流道路容量模型,并通过理论证明和仿真实验予以验证.结果表明,与不编队策略相比,两种策略下道路容量分别提高1.23%~49.62%和1.47%~60.34%,合作编队策略与单独编队策略相比能将道路容量再提高11%;当CA车辆渗透率大于50%和排强度大于0时,编队策略对道路容量的提升效果更显著,容量能提高13.27%~60.34%;单独编队策略下CA小车和CA卡车最大队列规模分别为8辆和6辆,合作编队下CA车辆最大队列规模为8辆.展开更多
文摘A novel grey Markov chain predictive model is discussed to reduce drift influence on the output of fiber optical gyroscopes (FOGs) and to improve FOGs' measurement precision. The proposed method possesses advantages of grey model and Markov chain. It makes good use of dynamic modeling idea of the grey model to predict general trend of original data. Then according to the trend, states are divided so that it can overcome the disadvantage of high computational cost of state transition probability matrix in Markov chain. Moreover, the presented approach expands the applied scope of the grey model and makes it be fit for prediction of random data with bigger fluctuation. The numerical results of real drift data from a certain type FOG verify the effectiveness of the proposed grey Markov chain model powerfully. The Markov chain is also investigated to provide a comparison with the grey Markov chain model. It is shown that the hybrid grey Markov chain prediction model has higher modeling precision than Markov chain itself, which prove this proposed method is very applicable and effective.
基金Project(70572090) supported by the National Natural Science Foundation of China
文摘A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1).
文摘为提高智能网联(connected and automated,CA)卡车、小车及人工驾驶卡车、小车的混合流道路通行能力,提出基于排强度和渗透率的CA车辆单独编队和合作编队策略.分别设计两种策略下混合流车辆跟驰模式,推导出基于改进Markov模型,涵盖CA车辆渗透率和排强度的车辆状态转移概率;分析两种策略下CA车辆队列分布,建立各策略下的混合流道路容量模型,并通过理论证明和仿真实验予以验证.结果表明,与不编队策略相比,两种策略下道路容量分别提高1.23%~49.62%和1.47%~60.34%,合作编队策略与单独编队策略相比能将道路容量再提高11%;当CA车辆渗透率大于50%和排强度大于0时,编队策略对道路容量的提升效果更显著,容量能提高13.27%~60.34%;单独编队策略下CA小车和CA卡车最大队列规模分别为8辆和6辆,合作编队下CA车辆最大队列规模为8辆.