DNS(domain name system) query log analysis has been a popular research topic in recent years. CLOPE, the represented transactional clustering algorithm, could be readily used for DNS query log mining. However, the alg...DNS(domain name system) query log analysis has been a popular research topic in recent years. CLOPE, the represented transactional clustering algorithm, could be readily used for DNS query log mining. However, the algorithm is inefficient when processing large scale data. The MR-CLOPE algorithm is proposed, which is an extension and improvement on CLOPE based on Map Reduce. Different from the previous parallel clustering method, a two-stage Map Reduce implementation framework is proposed. Each of the stage is implemented by one kind Map Reduce task. In the first stage, the DNS query logs are divided into multiple splits and the CLOPE algorithm is executed on each split. The second stage usually tends to iterate many times to merge the small clusters into bigger satisfactory ones. In these two stages, a novel partition process is designed to randomly spread out original sub clusters, which will be moved and merged in the map phrase of the second phase according to the defined merge criteria. In such way, the advantage of the original CLOPE algorithm is kept and its disadvantages are dealt with in the proposed framework to achieve more excellent clustering performance. The experiment results show that MR-CLOPE is not only faster but also has better clustering quality on DNS query logs compared with CLOPE.展开更多
频繁项目集挖掘用于发现项目之间的关联规则.为了高效求解面向大数据的频繁项目集,本文提出一种新的基于FP_Growth的频繁项目集并行挖掘算法NPFP_Growth(New Parallel algorithm based on FP_Growth),该算法对频繁模式树的存储结构进行...频繁项目集挖掘用于发现项目之间的关联规则.为了高效求解面向大数据的频繁项目集,本文提出一种新的基于FP_Growth的频繁项目集并行挖掘算法NPFP_Growth(New Parallel algorithm based on FP_Growth),该算法对频繁模式树的存储结构进行改进,基于Map/Reduce并行计算模型,利用HDFS实现数据存储,在各自计算节点上构造局部频繁模式树,求解该局部频繁模式树中每个分支的最长全局频繁项目集;对于全局非频繁项目集,计算其支持数,发送至相应计算节点进行支持度统计,从而以较为简单的算法实现频繁项目集并行挖掘.实验表明,NPFP_Growth算法具有较高的计算效率和良好的可伸缩性.展开更多
基金Project(61103046) supported in part by the National Natural Science Foundation of ChinaProject(B201312) supported by DHU Distinguished Young Professor Program,China+1 种基金Project(LY14F020007) supported by Zhejiang Provincial Natural Science Funds of ChinaProject(2014A610072) supported by the Natural Science Foundation of Ningbo City,China
文摘DNS(domain name system) query log analysis has been a popular research topic in recent years. CLOPE, the represented transactional clustering algorithm, could be readily used for DNS query log mining. However, the algorithm is inefficient when processing large scale data. The MR-CLOPE algorithm is proposed, which is an extension and improvement on CLOPE based on Map Reduce. Different from the previous parallel clustering method, a two-stage Map Reduce implementation framework is proposed. Each of the stage is implemented by one kind Map Reduce task. In the first stage, the DNS query logs are divided into multiple splits and the CLOPE algorithm is executed on each split. The second stage usually tends to iterate many times to merge the small clusters into bigger satisfactory ones. In these two stages, a novel partition process is designed to randomly spread out original sub clusters, which will be moved and merged in the map phrase of the second phase according to the defined merge criteria. In such way, the advantage of the original CLOPE algorithm is kept and its disadvantages are dealt with in the proposed framework to achieve more excellent clustering performance. The experiment results show that MR-CLOPE is not only faster but also has better clustering quality on DNS query logs compared with CLOPE.
文摘频繁项目集挖掘用于发现项目之间的关联规则.为了高效求解面向大数据的频繁项目集,本文提出一种新的基于FP_Growth的频繁项目集并行挖掘算法NPFP_Growth(New Parallel algorithm based on FP_Growth),该算法对频繁模式树的存储结构进行改进,基于Map/Reduce并行计算模型,利用HDFS实现数据存储,在各自计算节点上构造局部频繁模式树,求解该局部频繁模式树中每个分支的最长全局频繁项目集;对于全局非频繁项目集,计算其支持数,发送至相应计算节点进行支持度统计,从而以较为简单的算法实现频繁项目集并行挖掘.实验表明,NPFP_Growth算法具有较高的计算效率和良好的可伸缩性.