At present, the most common micro/nano-scale fabri ca tion processes include the plane silicon process based on IC technology, stereo silicon process, LIGA, quasi-LIGA based on near ultra violet deep lithography, MEMS...At present, the most common micro/nano-scale fabri ca tion processes include the plane silicon process based on IC technology, stereo silicon process, LIGA, quasi-LIGA based on near ultra violet deep lithography, MEMS, energy beam etching and micro/nano-machining, etc. A common problem for t hese processes is the difficulty to fabricate arbitrary form for 3-dimensional micro/nano-parts, devices or mechanisms. To develop advanced MEMS manufacturin g technology, and to achieve fabrication of true 3-dimensional parts, devices or mechanisms, this paper proposes a nanofabrication technology for rapid proto typing of 3-dimensional parts, using plasma chemical vapor deposition (PCVD). This process can be describes as follows: A laser beam is produced by a low power, quasi molecule laser. It enters the vac uum chamber through a window, and is focused on with the substrate surface. A ga s in the chamber is ionized by the laser beam to produce PCVD on the substrate s urface, and forms a particle of the size of Ф100 nm (its thickness is about 100 nm). When the laser beam moves along X-axis, many particles form a line. Then the laser beam moves one step in Y-axis to form a new line. A plane is complete d by many lines. Then the substrate moves in Z-axis to form new plane. Eventu ally, many planes form a 3-dimensional component. Using available CAD/CAM softw are with this process, rapid prototyping of complex components can be achieved. A nanometer precision linear motor, such as that described in Chinese national p atent (patent No. ZL 98 2 16753.9), can be used to obtain the nanometer precisio n movements in the process. The process does not require mask, can be used for v arious rapid prototyping materials, to obtain high fabrication precision (its sc ale precision is 15 nm), and larger ratio of height to width of micro/nano-stru cture. It can find widespread applications in the fabrication of micro-mechani sm, trimming IC, and fabricating minilens, etc.展开更多
美国定向能机动近程防空(directed energy maneuver-short range air defense,DE M-SHORAD)计划通过击伤、摧毁或压制旋转翼无人机、固定翼无人机以及火箭弹、火炮炮弹、迫击炮弹(rockets,artillery and mortar,RAM)等威胁目标,为机动...美国定向能机动近程防空(directed energy maneuver-short range air defense,DE M-SHORAD)计划通过击伤、摧毁或压制旋转翼无人机、固定翼无人机以及火箭弹、火炮炮弹、迫击炮弹(rockets,artillery and mortar,RAM)等威胁目标,为机动部队提供伴随防空,对抗新兴威胁,属于美国陆军防空反导现代化的优先项目之一。首先介绍了DE M-SHORAD研制计划;其次详细分析了系统结构,并由系统参数评估了系统的作战性能;最后梳理了系统的研制进展。通过综合分析可知,DE M-SHORAD系统采用最佳组件,通过快速原型方法实现激光武器系统在装甲车上的集成;为降低技术风险,该计划在发展方式上分为两个阶段,首先集成、测试2 kW~5 kW机动实验型高能激光器(mobile experimental high-energy laser,MEHEL),然后再研制50 kW级的多任务高能激光器(multi-mission high-energy laser,MMHEL)。经计算可得:MEHEL和MMHEL对无人机的最大射程分别约为0.77 km、4.8 km。展开更多
文摘At present, the most common micro/nano-scale fabri ca tion processes include the plane silicon process based on IC technology, stereo silicon process, LIGA, quasi-LIGA based on near ultra violet deep lithography, MEMS, energy beam etching and micro/nano-machining, etc. A common problem for t hese processes is the difficulty to fabricate arbitrary form for 3-dimensional micro/nano-parts, devices or mechanisms. To develop advanced MEMS manufacturin g technology, and to achieve fabrication of true 3-dimensional parts, devices or mechanisms, this paper proposes a nanofabrication technology for rapid proto typing of 3-dimensional parts, using plasma chemical vapor deposition (PCVD). This process can be describes as follows: A laser beam is produced by a low power, quasi molecule laser. It enters the vac uum chamber through a window, and is focused on with the substrate surface. A ga s in the chamber is ionized by the laser beam to produce PCVD on the substrate s urface, and forms a particle of the size of Ф100 nm (its thickness is about 100 nm). When the laser beam moves along X-axis, many particles form a line. Then the laser beam moves one step in Y-axis to form a new line. A plane is complete d by many lines. Then the substrate moves in Z-axis to form new plane. Eventu ally, many planes form a 3-dimensional component. Using available CAD/CAM softw are with this process, rapid prototyping of complex components can be achieved. A nanometer precision linear motor, such as that described in Chinese national p atent (patent No. ZL 98 2 16753.9), can be used to obtain the nanometer precisio n movements in the process. The process does not require mask, can be used for v arious rapid prototyping materials, to obtain high fabrication precision (its sc ale precision is 15 nm), and larger ratio of height to width of micro/nano-stru cture. It can find widespread applications in the fabrication of micro-mechani sm, trimming IC, and fabricating minilens, etc.