期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于特征工程和MRFO-ET的短期风电功率预测 被引量:5
1
作者 康文豪 徐天奇 +2 位作者 王阳光 邓小亮 李琰 《水利水电技术(中英文)》 北大核心 2022年第3期185-194,共10页
为解决风电历史数据挖掘不充分导致的预测精度不高问题,提出一种基于特征工程、蝠鲼觅食优化算法(Manta Ray Foraging Optimization,MRFO)和极端随机树(Extremely Randomized Trees,ET)模型的短期风电功率预测方法。首先对时间特征提取... 为解决风电历史数据挖掘不充分导致的预测精度不高问题,提出一种基于特征工程、蝠鲼觅食优化算法(Manta Ray Foraging Optimization,MRFO)和极端随机树(Extremely Randomized Trees,ET)模型的短期风电功率预测方法。首先对时间特征提取小时属性特征,并通过对风速、风向和温度等原始气象特征进行特征创造,从而充分挖掘历史数据的隐含信息,同时通过PCA方法降低数据维度。其次,将降维后的数据输入ET模型,并利用MRFO优化ET模型的参数;最后,以新疆某风电场实测数据进行了算例仿真。结果表明:与5种典型机器学习模型相比,ET模型具有更高的风电预测准确度。与单一ET模型相比,特征工程-ET模型较大程度地提高了预测精度,验证了特征工程方法的有效性。在同等条件下,特征工程-MRFO-ET模型比使用特征工程-ET模型均方根误差和平均绝对误差分别降低了29.46%和36.54%,而拟合优度系数提高了3.97%。与此同时,特征工程-MRFO-ET模型也比特征工程-GA-ET模型和特征工程-PSO-ET模型拥有更高的预测精度。研究成果可为解决短期风电功率预测问题提供了一种新的思路。 展开更多
关键词 短期风电功率预测 特征工程 主成分分析 蝠鲼觅食优化算法 极端随机树 新能源 影响因素 人工智能算法
在线阅读 下载PDF
离散蝠鲼觅食优化算法及在频谱分配中的应用 被引量:5
2
作者 王大为 刘新浩 +3 位作者 李竹 芦宾 郭爱心 柴国强 《计算机应用》 CSCD 北大核心 2022年第1期215-222,共8页
针对认知无线电中以最大化网络效益为准则的频谱分配难题以及蝠鲼觅食优化(MRFO)算法难以解决频谱分配问题的不足,提出一种离散蝠鲼觅食优化(DMRFO)算法。根据工程中频谱分配问题具有亲1性的特点,首先,基于Sigmoid函数(SF)离散法对MRFO... 针对认知无线电中以最大化网络效益为准则的频谱分配难题以及蝠鲼觅食优化(MRFO)算法难以解决频谱分配问题的不足,提出一种离散蝠鲼觅食优化(DMRFO)算法。根据工程中频谱分配问题具有亲1性的特点,首先,基于Sigmoid函数(SF)离散法对MRFO算法进行离散二进制化;然后,通过异或算子和速度调节因子引导蝠鲼根据当前速度大小自适应向最优解调整下一时刻的位置;同时,通过在全局最优解附近进行二进制螺旋觅食避免算法陷入局部最优;最后,将提出的DMRFO算法应用于解决频谱分配问题。仿真实验结果表明,采用DMRFO算法分配频谱时的网络效益的收敛均值和标准差分别为362.60和4.14,该结果显著优于离散人工蜂群(DABC)算法、二进制粒子群优化(BPSO)算法以及改进的二进制粒子群优化(IBPSO)算法。 展开更多
关键词 认知无线电 频谱分配 智能计算 蝠鲼觅食优化算法 网络效益
在线阅读 下载PDF
基于Halton序列改进蝠鲼算法的K-means图像分割 被引量:5
3
作者 董跃华 李俊 朱东林 《电光与控制》 CSCD 北大核心 2023年第2期91-98,共8页
图像分割在日常生活中扮演着重要角色,传统的K-means图像分割具有随机性且容易陷入局部最优等缺陷,使得分割质量大大降低。为改善这些现象,提出一种基于Halton序列改进蝠鲼觅食优化(HMRFO)算法的K-means图像分割,HMRFO采用Halton序列初... 图像分割在日常生活中扮演着重要角色,传统的K-means图像分割具有随机性且容易陷入局部最优等缺陷,使得分割质量大大降低。为改善这些现象,提出一种基于Halton序列改进蝠鲼觅食优化(HMRFO)算法的K-means图像分割,HMRFO采用Halton序列初始化种群,使得个体位置充分均匀,再引入折射反向学习提升算法的全局搜索能力,最后引入新型的高斯变异策略,减小算法陷入局部最优的概率。在6个基准测试函数中对比了5种算法,验证了HMRFO的有效性及可行性。同时,将其应用于K-means图像分割中,与其他4种算法进行对比,结果显示HMRFO优化K-means具有较好的分割质量及泛化能力。 展开更多
关键词 图像分割 K-MEANS聚类算法 Halton序列 蝠鲼觅食优化算法 折射反向学习 高斯变异
在线阅读 下载PDF
含水层富水性分区及工作面疏放水后涌水量分段预测 被引量:7
4
作者 杨磊 雷方超 +3 位作者 侯恩科 路波 冯栋 赵凯兴 《煤田地质与勘探》 EI CAS CSCD 北大核心 2023年第10期114-123,共10页
风化基岩与烧变岩含水层严重威胁着陕北侏罗纪煤田矿井的安全生产,精确预测其富水性与工作面涌水量对矿井防治水具有重要意义。针对具有密切水力联系的风化基岩与烧变岩含水层,以陕西红柳林煤矿15217工作面所在区域为研究区,选取含水层... 风化基岩与烧变岩含水层严重威胁着陕北侏罗纪煤田矿井的安全生产,精确预测其富水性与工作面涌水量对矿井防治水具有重要意义。针对具有密切水力联系的风化基岩与烧变岩含水层,以陕西红柳林煤矿15217工作面所在区域为研究区,选取含水层厚度、岩性组合指数、岩石烧变及风化程度指数、岩心采取率为评价指标,提出了基于蝠鲼觅食算法优化支持向量机的含水层富水性预测方法,通过对风化基岩与烧变岩含水层富水性的精准分区预测,将工作面划分为不同富水等级的区段。在此基础上,分析经过长时间井下疏放水后的工作面采前水文地质条件,利用动静储量法对工作面不同富水等级区段的涌水量进行预测,与矿井生产过程中的涌水量实测数据相比,涌水量预测结果误差整体较小,介于0.30~6.98 m3/h,表明此预测方法可行度与准确率较高,为红柳林煤矿及类似条件矿井工作面涌水量预测提供了新的思路与方法。 展开更多
关键词 风化基岩 烧变岩 富水性 评价指标 蝠鲼觅食优化算法 涌水量预测 侏罗纪煤田
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部