The basic"current"statistical model and adaptive Kalman filter algorithm can not track a weakly maneuvering target precisely,though it has good estimate accuracy for strongly maneuvering target.In order to s...The basic"current"statistical model and adaptive Kalman filter algorithm can not track a weakly maneuvering target precisely,though it has good estimate accuracy for strongly maneuvering target.In order to solve this problem,a novel nonlinear fuzzy membership function was presented to adjust the upper and lower limit of target acceleration adaptively,and then the validity of the new algorithm for feeblish maneuvering target was proved in theory.At last,the computer simulation experiments indicated that the new algorithm has a great advantage over the basic"current"statistical model and adaptive algorithm.展开更多
Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multi...Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multiple-model based method was proposed to tackle such issues. The method was developed in the framework of Bernoulli filter by integrating the model probability parameter and implemented via sequential Monte Carlo(particle) technique. Target detection was accomplished through the estimation of target's existence probability, and the estimate of target state was obtained by combining the outputs of modeldependent filtering. The simulation results show that the proposed method performs better than the TBD method implemented by the conventional multiple-model particle filter.展开更多
针对标准标签多伯努利(labeled multi-Bernoulli,LMB)算法只考虑了单个运动模型的问题,提出了一种适用于跳转马尔科夫系统的多模型标签多伯努利(multiple model LMB,MM-LMB)算法。首先对目标状态进行扩展,将多模型思想引入LMB算法得到...针对标准标签多伯努利(labeled multi-Bernoulli,LMB)算法只考虑了单个运动模型的问题,提出了一种适用于跳转马尔科夫系统的多模型标签多伯努利(multiple model LMB,MM-LMB)算法。首先对目标状态进行扩展,将多模型思想引入LMB算法得到了新的预测和更新方程,并给出了算法的序贯蒙特卡罗实现。仿真实验表明,MM-LMB算法能对多机动目标进行有效跟踪,在复杂探测环境下跟踪精度优于多模型概率假设密度(multiple model probability hypothesis density,MM-PHD)算法和多模型势平衡多目标多伯努利(multiple model cardinality balanced multi-target multi-Bernoulli,MM-CBMeMBer)算法;所提算法计算量当目标相距较远时低于MM-PHD和MM-CBMeMBer,目标聚集时增长速度快于对比算法。展开更多
文摘The basic"current"statistical model and adaptive Kalman filter algorithm can not track a weakly maneuvering target precisely,though it has good estimate accuracy for strongly maneuvering target.In order to solve this problem,a novel nonlinear fuzzy membership function was presented to adjust the upper and lower limit of target acceleration adaptively,and then the validity of the new algorithm for feeblish maneuvering target was proved in theory.At last,the computer simulation experiments indicated that the new algorithm has a great advantage over the basic"current"statistical model and adaptive algorithm.
基金Projects(61002022,61471370)supported by the National Natural Science Foundation of China
文摘Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multiple-model based method was proposed to tackle such issues. The method was developed in the framework of Bernoulli filter by integrating the model probability parameter and implemented via sequential Monte Carlo(particle) technique. Target detection was accomplished through the estimation of target's existence probability, and the estimate of target state was obtained by combining the outputs of modeldependent filtering. The simulation results show that the proposed method performs better than the TBD method implemented by the conventional multiple-model particle filter.
文摘针对标准标签多伯努利(labeled multi-Bernoulli,LMB)算法只考虑了单个运动模型的问题,提出了一种适用于跳转马尔科夫系统的多模型标签多伯努利(multiple model LMB,MM-LMB)算法。首先对目标状态进行扩展,将多模型思想引入LMB算法得到了新的预测和更新方程,并给出了算法的序贯蒙特卡罗实现。仿真实验表明,MM-LMB算法能对多机动目标进行有效跟踪,在复杂探测环境下跟踪精度优于多模型概率假设密度(multiple model probability hypothesis density,MM-PHD)算法和多模型势平衡多目标多伯努利(multiple model cardinality balanced multi-target multi-Bernoulli,MM-CBMeMBer)算法;所提算法计算量当目标相距较远时低于MM-PHD和MM-CBMeMBer,目标聚集时增长速度快于对比算法。