处理不平衡数据分类时,传统模糊系统对少数类样本识别率较低.针对这一问题,首先,在前件参数学习上,提出了竞争贝叶斯模糊聚类(Bayesian fuzzy clustering based on competitive learning,BFCCL)算法,BFCCL算法考虑不同类别样本聚类中心...处理不平衡数据分类时,传统模糊系统对少数类样本识别率较低.针对这一问题,首先,在前件参数学习上,提出了竞争贝叶斯模糊聚类(Bayesian fuzzy clustering based on competitive learning,BFCCL)算法,BFCCL算法考虑不同类别样本聚类中心间的排斥作用,采用交替迭代的执行方式并通过马尔科夫蒙特卡洛方法获得模型参数最优解.其次,在后件参数学习上,基于大间隔的策略并通过参数调节使得少数类到分类面的距离大于多数类到分类面的距离,该方法能有效纠正分类面的偏移.基于上述思想以0阶TSK型模糊系统为具体研究对象构造了适用于不平衡数据分类问题的0阶TSK型模糊系统(0-TSK-IDC).人工和真实医学数据集实验结果表明,0-TSK-IDC在不平衡数据分类问题中对少数类和多数类均具有较高的识别率,且具有良好的鲁棒性和可解释性.展开更多
二型模糊逻辑系统是当前的学术研究的热点问题,而降型是该系统中非常重要的一个模块.Kamik-Mendel(KM)算法是被用来计算和完成区间二型模糊逻辑系统降型的标准算法.通过比较离散版本KM算法中求和运算和连续版本的KM(continuous version ...二型模糊逻辑系统是当前的学术研究的热点问题,而降型是该系统中非常重要的一个模块.Kamik-Mendel(KM)算法是被用来计算和完成区间二型模糊逻辑系统降型的标准算法.通过比较离散版本KM算法中求和运算和连续版本的KM(continuous version ofKM,CKM)算法中求积分运算,本文利用数值积分技术中牛顿-柯斯特求积公式将标准KM算法扩展成3种不同形式的加权KM(weighted KM,WKM)算法.而KM算法只是WKM算法中的一种特殊情况.3个计算机仿真例子用来阐述和分析WKM算法的表现,与传统的KM算法相比,WKM算法有较小的绝对误差和较快的收敛速度,给二型模糊逻辑系统设计者和应用者提供了潜在的应用价值.展开更多
文摘处理不平衡数据分类时,传统模糊系统对少数类样本识别率较低.针对这一问题,首先,在前件参数学习上,提出了竞争贝叶斯模糊聚类(Bayesian fuzzy clustering based on competitive learning,BFCCL)算法,BFCCL算法考虑不同类别样本聚类中心间的排斥作用,采用交替迭代的执行方式并通过马尔科夫蒙特卡洛方法获得模型参数最优解.其次,在后件参数学习上,基于大间隔的策略并通过参数调节使得少数类到分类面的距离大于多数类到分类面的距离,该方法能有效纠正分类面的偏移.基于上述思想以0阶TSK型模糊系统为具体研究对象构造了适用于不平衡数据分类问题的0阶TSK型模糊系统(0-TSK-IDC).人工和真实医学数据集实验结果表明,0-TSK-IDC在不平衡数据分类问题中对少数类和多数类均具有较高的识别率,且具有良好的鲁棒性和可解释性.
文摘二型模糊逻辑系统是当前的学术研究的热点问题,而降型是该系统中非常重要的一个模块.Kamik-Mendel(KM)算法是被用来计算和完成区间二型模糊逻辑系统降型的标准算法.通过比较离散版本KM算法中求和运算和连续版本的KM(continuous version ofKM,CKM)算法中求积分运算,本文利用数值积分技术中牛顿-柯斯特求积公式将标准KM算法扩展成3种不同形式的加权KM(weighted KM,WKM)算法.而KM算法只是WKM算法中的一种特殊情况.3个计算机仿真例子用来阐述和分析WKM算法的表现,与传统的KM算法相比,WKM算法有较小的绝对误差和较快的收敛速度,给二型模糊逻辑系统设计者和应用者提供了潜在的应用价值.