In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the researc...In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification.展开更多
In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and...In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and recognition method for multiple radar-emitter modulation types based on a residual network.This method can quickly perform parallel classification and recognition of multi-modulation radar time-domain aliasing signals under low SNRs.First,we perform time-frequency analysis on the received signal to extract the normalized time-frequency image through the short-time Fourier transform(STFT).The time-frequency distribution image is then denoised using a deep normalized convolutional neural network(DNCNN).Secondly,the multi-label classification and recognition model for multi-modulation radar emitter time-domain aliasing signals is established,and learning the characteristics of radar signal time-frequency distribution image dataset to achieve the purpose of training model.Finally,time-frequency image is recognized and classified through the model,thus completing the automatic classification and recognition of the time-domain aliasing signal.Simulation results show that the proposed method can classify and recognize radar emitter signals of different modulation types in parallel under low SNRs.展开更多
Multi-label classification problems arise frequently in text categorization, and many other related applications. Like conventional categorization problems, multi-label categorization tasks suffer from the curse of hi...Multi-label classification problems arise frequently in text categorization, and many other related applications. Like conventional categorization problems, multi-label categorization tasks suffer from the curse of high dimensionality. Existing multi-label dimensionality reduction methods mainly suffer from two limitations. First, latent nonlinear structures are not utilized in the input space. Second, the label information is not fully exploited. This paper proposes a new method, multi-label local discriminative embedding (MLDE), which exploits latent structures to minimize intraclass distances and maximize interclass distances on the basis of label correlations. The latent structures are extracted by constructing two sets of adjacency graphs to make use of nonlinear information. Non-symmetric label correlations, which are the case in real applications, are adopted. The problem is formulated into a global objective function and a linear mapping is achieved to solve out-of-sample problems. Empirical studies across 11 Yahoo sub-tasks, Enron and Bibtex are conducted to validate the superiority of MLDE to state-of-art multi-label dimensionality reduction methods.展开更多
Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimension...Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimensionality reduction via semi-supervised discriminant analysis(MSDA) was proposed.It was expected to derive an objective discriminant function as smooth as possible on the data manifold by multi-label learning and semi-supervised learning.By virtue of the latent imformation,which was provided by the graph weighted matrix of sample attributes and the similarity correlation matrix of partial sample labels,MSDA readily made the separability between different classes achieve maximization and estimated the intrinsic geometric structure in the lower manifold space by employing unlabeled data.Extensive experimental results on several real multi-label datasets show that after dimensionality reduction using MSDA,the average classification accuracy is about 9.71% higher than that of other algorithms,and several evaluation metrices like Hamming-loss are also superior to those of other dimensionality reduction methods.展开更多
接诉即办是实现社会治理智能化、提高人民满意度的重要举措,其中精准分析民众诉求智能匹配工单处理部门,实现诉求的快速响应、高效办理尤为关键;然而,民众诉求数据中的诉求描述不清晰、类别混淆且比例失衡会导致诉求类别分析困难,影响...接诉即办是实现社会治理智能化、提高人民满意度的重要举措,其中精准分析民众诉求智能匹配工单处理部门,实现诉求的快速响应、高效办理尤为关键;然而,民众诉求数据中的诉求描述不清晰、类别混淆且比例失衡会导致诉求类别分析困难,影响了智能派单的效率与准确性。针对上述问题,提出编解码器结构的诉求层次多标签分类模型(HMCHotline)。首先,在文本编码器中引入诉求领域中的细粒度关键词先验知识以抑制噪声干扰,并融合诉求的时空信息提高语义特征的判别力;其次,利用标签层次结构生成具有层次与语义感知的标签嵌入,并构建基于Transformer模型的标签解码器,利用诉求的语义特征和标签嵌入进行标签解码;同时,在标签的层级依赖关系基础上引入动态标签表策略限制标签的解码范围,以解决标签不一致问题;最后,采用Softmax分组策略将样本数量相近的标签类别分为同组进行Softmax操作,从而缓解由标签长尾分布导致的分类准确率低的问题。在Hotline、RCV1(Reuters Corpus VolumeⅠ)-v2和WOS(Web Of Science)数据集上的实验结果表明,相较于层次感知的标签语义匹配网络(HiMatch),所提模型的Micro-F1分别提高了1.65、2.06和0.43个百分点,验证了模型的有效性。展开更多
针对复杂电磁环境下雷达复合干扰识别困难和网络模型复杂度高的问题,将多标签分类与改进的ShuffleNet V2相结合,提出一种轻量化的多标签ShuffleNet(multi-labeling ShuffleNet, ML-SNet)雷达复合干扰识别算法。首先,使用轻量化的Shuffle...针对复杂电磁环境下雷达复合干扰识别困难和网络模型复杂度高的问题,将多标签分类与改进的ShuffleNet V2相结合,提出一种轻量化的多标签ShuffleNet(multi-labeling ShuffleNet, ML-SNet)雷达复合干扰识别算法。首先,使用轻量化的ShuffleNet V2作为主干网络,引入SimAM(similarity-based attention module)注意力机制,提高网络特征提取能力。其次,使用漏斗激活线性整流函数(funnel activation rectified linear unit, FReLU)代替线性整流单元(rectified linear unit, ReLU)激活函数,减少特征图的信息损失。最后,使用多标签分类算法对网络输出进行分类,得到识别结果。实验结果表明,在干噪比范围为-10~10 dB的情况下,所提算法对15类雷达复合干扰的平均识别率为97.9%。与其他网络相比,所提算法具有较低的计算复杂度,而且识别性能表现最佳。展开更多
随着互联网技术的发展以及社交网络的扩大,网络平台已经成为人们获取信息的一个重要途径。标签的引入提升了信息分类及检索效率。同时,标签推荐系统的出现不仅方便了用户输入标签,还提高了标签的质量。传统的标签推荐算法通常只考虑标...随着互联网技术的发展以及社交网络的扩大,网络平台已经成为人们获取信息的一个重要途径。标签的引入提升了信息分类及检索效率。同时,标签推荐系统的出现不仅方便了用户输入标签,还提高了标签的质量。传统的标签推荐算法通常只考虑标签和项目两个主体,而忽略了用户在选择标签时个人意图所起到的重要作用。由于在标签推荐系统中标签最终由用户确定,因此用户的偏好在标签推荐中起着关键作用。为此,引入用户作为主体,并结合用户发布的历史帖子的先后顺序,将标签推荐任务建模为更加符合真实场景的序列标签推荐任务。提出了一种基于MLP的序列标签推荐方法(MLP for Sequential Tag Recommendation, MLP4STR),该方法显式地建模用户偏好用于引导整体标签推荐。MLP4STR采用一种跨特征对齐的MLP序列特征提取框架,将文本和标签的特征对齐,获取用户的历史帖子信息和历史标签信息中隐含的用户动态兴趣。最后,结合帖子内容和用户偏好进行标签推荐。在4个真实世界的数据集上得到的实验结果表明,MLP4STR能够有效地学习序列标签推荐中的用户历史行为序列的信息,其中,评价指标F1@5较最优的对比算法有显著提升。展开更多
基金supported by the National Natural Science Foundation of China(5110505261173163)the Liaoning Provincial Natural Science Foundation of China(201102037)
文摘In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification.
基金The authors would like to acknowledge National Natural Science Foundation of China under Grant 61973037 and Grant 61673066 to provide fund for conducting experiments.
文摘In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and recognition method for multiple radar-emitter modulation types based on a residual network.This method can quickly perform parallel classification and recognition of multi-modulation radar time-domain aliasing signals under low SNRs.First,we perform time-frequency analysis on the received signal to extract the normalized time-frequency image through the short-time Fourier transform(STFT).The time-frequency distribution image is then denoised using a deep normalized convolutional neural network(DNCNN).Secondly,the multi-label classification and recognition model for multi-modulation radar emitter time-domain aliasing signals is established,and learning the characteristics of radar signal time-frequency distribution image dataset to achieve the purpose of training model.Finally,time-frequency image is recognized and classified through the model,thus completing the automatic classification and recognition of the time-domain aliasing signal.Simulation results show that the proposed method can classify and recognize radar emitter signals of different modulation types in parallel under low SNRs.
基金supported by the National Natural Science Foundation of China(61472305)the Science Research Program,Xi’an,China(2017073CG/RC036CXDKD003)the Aeronautical Science Foundation of China(20151981009)
文摘Multi-label classification problems arise frequently in text categorization, and many other related applications. Like conventional categorization problems, multi-label categorization tasks suffer from the curse of high dimensionality. Existing multi-label dimensionality reduction methods mainly suffer from two limitations. First, latent nonlinear structures are not utilized in the input space. Second, the label information is not fully exploited. This paper proposes a new method, multi-label local discriminative embedding (MLDE), which exploits latent structures to minimize intraclass distances and maximize interclass distances on the basis of label correlations. The latent structures are extracted by constructing two sets of adjacency graphs to make use of nonlinear information. Non-symmetric label correlations, which are the case in real applications, are adopted. The problem is formulated into a global objective function and a linear mapping is achieved to solve out-of-sample problems. Empirical studies across 11 Yahoo sub-tasks, Enron and Bibtex are conducted to validate the superiority of MLDE to state-of-art multi-label dimensionality reduction methods.
基金Project(60425310) supported by the National Science Fund for Distinguished Young ScholarsProject(10JJ6094) supported by the Hunan Provincial Natural Foundation of China
文摘Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimensionality reduction via semi-supervised discriminant analysis(MSDA) was proposed.It was expected to derive an objective discriminant function as smooth as possible on the data manifold by multi-label learning and semi-supervised learning.By virtue of the latent imformation,which was provided by the graph weighted matrix of sample attributes and the similarity correlation matrix of partial sample labels,MSDA readily made the separability between different classes achieve maximization and estimated the intrinsic geometric structure in the lower manifold space by employing unlabeled data.Extensive experimental results on several real multi-label datasets show that after dimensionality reduction using MSDA,the average classification accuracy is about 9.71% higher than that of other algorithms,and several evaluation metrices like Hamming-loss are also superior to those of other dimensionality reduction methods.
文摘接诉即办是实现社会治理智能化、提高人民满意度的重要举措,其中精准分析民众诉求智能匹配工单处理部门,实现诉求的快速响应、高效办理尤为关键;然而,民众诉求数据中的诉求描述不清晰、类别混淆且比例失衡会导致诉求类别分析困难,影响了智能派单的效率与准确性。针对上述问题,提出编解码器结构的诉求层次多标签分类模型(HMCHotline)。首先,在文本编码器中引入诉求领域中的细粒度关键词先验知识以抑制噪声干扰,并融合诉求的时空信息提高语义特征的判别力;其次,利用标签层次结构生成具有层次与语义感知的标签嵌入,并构建基于Transformer模型的标签解码器,利用诉求的语义特征和标签嵌入进行标签解码;同时,在标签的层级依赖关系基础上引入动态标签表策略限制标签的解码范围,以解决标签不一致问题;最后,采用Softmax分组策略将样本数量相近的标签类别分为同组进行Softmax操作,从而缓解由标签长尾分布导致的分类准确率低的问题。在Hotline、RCV1(Reuters Corpus VolumeⅠ)-v2和WOS(Web Of Science)数据集上的实验结果表明,相较于层次感知的标签语义匹配网络(HiMatch),所提模型的Micro-F1分别提高了1.65、2.06和0.43个百分点,验证了模型的有效性。
文摘针对复杂电磁环境下雷达复合干扰识别困难和网络模型复杂度高的问题,将多标签分类与改进的ShuffleNet V2相结合,提出一种轻量化的多标签ShuffleNet(multi-labeling ShuffleNet, ML-SNet)雷达复合干扰识别算法。首先,使用轻量化的ShuffleNet V2作为主干网络,引入SimAM(similarity-based attention module)注意力机制,提高网络特征提取能力。其次,使用漏斗激活线性整流函数(funnel activation rectified linear unit, FReLU)代替线性整流单元(rectified linear unit, ReLU)激活函数,减少特征图的信息损失。最后,使用多标签分类算法对网络输出进行分类,得到识别结果。实验结果表明,在干噪比范围为-10~10 dB的情况下,所提算法对15类雷达复合干扰的平均识别率为97.9%。与其他网络相比,所提算法具有较低的计算复杂度,而且识别性能表现最佳。
文摘随着互联网技术的发展以及社交网络的扩大,网络平台已经成为人们获取信息的一个重要途径。标签的引入提升了信息分类及检索效率。同时,标签推荐系统的出现不仅方便了用户输入标签,还提高了标签的质量。传统的标签推荐算法通常只考虑标签和项目两个主体,而忽略了用户在选择标签时个人意图所起到的重要作用。由于在标签推荐系统中标签最终由用户确定,因此用户的偏好在标签推荐中起着关键作用。为此,引入用户作为主体,并结合用户发布的历史帖子的先后顺序,将标签推荐任务建模为更加符合真实场景的序列标签推荐任务。提出了一种基于MLP的序列标签推荐方法(MLP for Sequential Tag Recommendation, MLP4STR),该方法显式地建模用户偏好用于引导整体标签推荐。MLP4STR采用一种跨特征对齐的MLP序列特征提取框架,将文本和标签的特征对齐,获取用户的历史帖子信息和历史标签信息中隐含的用户动态兴趣。最后,结合帖子内容和用户偏好进行标签推荐。在4个真实世界的数据集上得到的实验结果表明,MLP4STR能够有效地学习序列标签推荐中的用户历史行为序列的信息,其中,评价指标F1@5较最优的对比算法有显著提升。