The age of mineralization in a mining area is a primary factor in various researches related to ore\|forming process. It is that the uncertainty of mineralization ages of gold ore deposits in northern zone of eastern ...The age of mineralization in a mining area is a primary factor in various researches related to ore\|forming process. It is that the uncertainty of mineralization ages of gold ore deposits in northern zone of eastern Kunlun Mountains, Qinghai Province, restrains to probe the relationship of the deposits to the regional tectonic evolution. This paper documents the fission track method used to determine the ages of gold ore deposits in eastern Kunlun Mountains and considers the implication for the origin of the deposits.Eastern Kunlun Mountains is the northern part of the Qinghai—Tibet Plateau and is of three deep\|seated fault belts in about EW extension. This work mainly includes three gold ore districts. All of them, in the north of Mid\|Kunlun fault belt, belong to northern part of eastern Kunlun Mountains. The Yanjingou district, with geographical coordinate 96°00’E and 36°10’N, is located 60 km north of Hongqigou district . Both of them are large, typical tectonoalteration gold deposits and were formed in similar geological setting. Hongshuihe ore district is located 50 km east of Yanjingou district and includes tectonoalteration and magmatic cryptoexplosive gold deposits. Outcroped strata are dominantly Jinshuikou Group metamorphic rocks of Lower Proterozoic erathem. The occurrence area of igneous rocks, especially granitoid, accounts for about 90% in first two districts and become less in Hongshuihe district. The gold deposits occur in NW\|striking fault belts. The Rb\|Sr isochron age and K\|Ar isotopic age of Moyite relevant to the gold mineralization are respectively 228 25Ma and 207 1Ma. Rb\|Sr dating of diorite porphyrite is 209 09Ma. Sericite selected from Yanjingou orebody has 252 9Ma K\|Ar age. The ore in Hongqigou district has 197Ma K\|Ar age and 210Ma model age of Pb isotope of galena.展开更多
The Ediacarian volcanic series from the Lac Ifni sector are composed of a large variety of rocks from basalts and rhyolites to intermediates facies such as andesites,rhyodacites and pyroclastites.All these rocks are i...The Ediacarian volcanic series from the Lac Ifni sector are composed of a large variety of rocks from basalts and rhyolites to intermediates facies such as andesites,rhyodacites and pyroclastites.All these rocks are intruded by dolerite dikes.Secondary processes are reflected by total serpentinization of olivine within basic andesite and by albitization展开更多
Glacially driven chemical weathering could make concentration of CO\-2 in the atmosphere decrease, and the process might play a significant role in climate change and the carbon cycle. So the study of chemical compone...Glacially driven chemical weathering could make concentration of CO\-2 in the atmosphere decrease, and the process might play a significant role in climate change and the carbon cycle. So the study of chemical components and their contents of glacial meltwater in an alpine glacier\|covered catchment has important geochemical and climatological significance.展开更多
Laji Shan is located in the eastern part of Qinghai Province,sandwiched between Xining and Hualong Basins.It is about 250km long and 10~20km wide from Riyueshan in the west to Minheguanting in the east.Laji Shan belo...Laji Shan is located in the eastern part of Qinghai Province,sandwiched between Xining and Hualong Basins.It is about 250km long and 10~20km wide from Riyueshan in the west to Minheguanting in the east.Laji Shan belongs to the Caledonian orogenic belt.Its basement consists of the rocks of Palaeo\|Protero zoic Hualong Group (Pt 1 hl ) and Neo\|Proterozoic Huangzhong Group (Pt\-3 h ).There are ptygmatic folds,closely linear type folds,strongly structural d ifferentiation and schistosity developed,suggesting that the basement underwent deep seated ductile deformation.The main part of Laji Shan is composed of Early\|Palaeozoic marine facies volcanic rocks and clastic sedimentary rocks,and suffered greenschist facies metamorphism and brittle\|ductile deformation.Others are composed of Ea rly\|Palaeozoic basic and ultrabasic rocks,intermediate\|acidic intruded rocks a nd dike rocks.Devonian molasse formation in Laji Shan is in uncomfortable contac t with underlying strata.Jurassic and Cretaceous systems are intermont basin dep osits,corresponding to a cover.展开更多
The Kunlun Mountains is situated in the north margin of the Tibetan plateau and is one of crucial areas for unraveling the tectonic evolutionary history of the plateau and Eurasia. However, there is no widely accepted...The Kunlun Mountains is situated in the north margin of the Tibetan plateau and is one of crucial areas for unraveling the tectonic evolutionary history of the plateau and Eurasia. However, there is no widely accepted model for this area. One of the reasons is that some basic issues for the tectonic reconstruction have not been well settled, they are: (1) Is the Kunlun Mountains an ancient accretion prism, or a mini continent with old basement?(2) What is the age of the Kudi ophiolite, early Paleozoic or late Paleozoic?(3) When did the South Kunlun Block accrete to the Tarim Block?(4) Do the fifth and the forth sutures represent different oceans, or they are just the chronologically different relics of the same ocean?(5) Did the Kunlun Mountains experience continuous subduction since Neoproterozoic?(6) When did the Paleo\|Tethys closed in the West Kunlun range?展开更多
The Longmen Mountains and adjacent regions on the eastern margin of the Tibetan plateau can be divided into three tectonic units: the eastern Songpan—Garzê fold belt, the Longmen Mountains (Longmen Shan) Thrust...The Longmen Mountains and adjacent regions on the eastern margin of the Tibetan plateau can be divided into three tectonic units: the eastern Songpan—Garzê fold belt, the Longmen Mountains (Longmen Shan) Thrust—Nappe belt and the Western Sichuan foreland basin that occupies the western part of the Sichuan basin. The Longmen Shan Thrust—Nappe belt is subdivided by six northwest\|dipping major listric thrusts, with accompanying duplexes and imbricate fans, into five large\|scale nappes (Chen & Wilson, 1996). In the inner Longmen Shan, the nappe units have incorporated both Mesoproterozoic basement and Sinian (Neoproterozoic) to Triassic cover sequences as “thick\|skinned" horses. Whereas, in the frontal Longmen Shan, Sinian to Cretaceous cover sediments have been stripped from the basement as “thin\|skinned" fold and thrust sheets, including extensively distributed klippen structures. Pre\|thrusting extension during Devonian to middle Late Triassic times resulted in syndepositional normal faults. Structural inversion of these faults initiated the “Peng Xian—Guan Xian basement complex", Jiuding Shan and Tangwangzhai nappes, during an early episode of the Indosinian Orogeny (Norian to Rhaetian). This was followed by episodic thrusting during latest Triassic to Early Cretaceous times to develop the Guan Xian—An Xian and Southeastern Marginal nappes that have incorporated sediments from the neighbouring foreland basin into the frontal part of the Thrust—Nappe belt. Differential thrusting occurred across the Thrust—Nappe belt during a Late Miocene reactivation of the pre\|existing faults.展开更多
The study of land surface temperature(LST)is of great significance for ecosystem monitoring and ecological environmental protection in the Qinling Mountains of China.In view of the contradicting spatial and temporal r...The study of land surface temperature(LST)is of great significance for ecosystem monitoring and ecological environmental protection in the Qinling Mountains of China.In view of the contradicting spatial and temporal resolutions in extracting LST from satellite remote sensing(RS)data,the areas with complex landforms of the Eastern Qinling Mountains were selected as the research targets to establish the correlation between the normalized difference vegetation index(NDVI)and LST.Detailed information on the surface features and temporal changes in the land surface was provided by Sentinel-2 and Sentinel-3,respectively.Based on the statistically downscaling method,the spatial scale could be decreased from 1000 m to 10 m,and LST with a Sentinel-3 temporal resolution and a 10 m spatial resolution could be retrieved.Comparing the 1 km resolution Sentinel-3 LST with the downscaling results,the 10 m LST downscaling data could accurately reflect the spatial distribution of the thermal characteristics of the original LST image.Moreover,the surface temperature data with a 10 m high spatial resolution had clear texture and obvious geomorphic features that could depict the detailed information of the ground features.The results showed that the average error was 5 K on April 16,2019 and 2.6 K on July 15,2019.The smaller error values indicated the higher vegetation coverage of summer downscaling result with the highest level on July 15.展开更多
A new cranium and two mandibles of Ailuropoda melanoleuca from Xiangxi,Hunan Province are described here.The materials were discovered in a karst cave on the Bamian Mountain at an altitude of 1200 m,with AMC carbon-fo...A new cranium and two mandibles of Ailuropoda melanoleuca from Xiangxi,Hunan Province are described here.The materials were discovered in a karst cave on the Bamian Mountain at an altitude of 1200 m,with AMC carbon-fourteen isotope dating indicating an age of 2800±30 BP.Historically,the giant panda was widely distributed in southern China and parts of Southeast Asia during the Pleistocene epoch,but it is now confined and isolated to six mountain ranges in southwest China’s Sichuan,Shaanxi,and Gansu provinces.The subfossil materials reported here represent the first discovery of the living species of giant panda in Xiangxi,Hunan.This extends their geographical distribution in southern China during the Holocene epoch eastward to the eastern edge of the Yunnan-Guizhou Plateau and their recent altitude range down to 1200 m.展开更多
Prediction of water inflow into a tunnel is a crucial prerequisite for the waterproof and drainage design of mountain tunnels in water-rich areas.Based on the proposed Baiyun Mountain Tunnel project in Guangzhou,a num...Prediction of water inflow into a tunnel is a crucial prerequisite for the waterproof and drainage design of mountain tunnels in water-rich areas.Based on the proposed Baiyun Mountain Tunnel project in Guangzhou,a numerical percolation model of random fractured rock of a tunnel underpassing a water reservoir is established to study the seepage characteristics of surrounding rock,the law of water inflow,and the change of lining water pressure,considering the local artificial boundary conditions for seepage in large rock mass,.In addition,the influences of rock permeability,fracture aperture,grouting circle thickness,and penetration are analyzed.The results show that:(1)Only fractures with aperture wider than 0.1 mm can play a significant role in water conduction in rocks with the permeability lower than 10^(-11)m^(2);(2)The greater the permeability difference between the fractures and rocks,the more remarkable the effects of fractures on the surrounding rock seepage field and cavern water inflow;(3)The sensitivity of grouting waterproof function to grouting circle thickness,grouting ring penetration,and rock permeability is significantly higher than that of tunnel buried depth and fracture aperture;(4)The lining water head is much more sensitive to the grouting circle thickness and penetration than to the tunnel buried depth;(5)With the grouting range enlarging,the impact of grouting circle permeability on the precipitation pressure role of the grouting ring increases;(6)For the interesting tunnel designed to be built at the depth of 70 m,the grouting circle with the thickness of 0.5 m and permeability of 10-^(14)m^(2)is recommended.展开更多
This paper conducted a systematic survey and zoogeographical region analysis of the family Sphingidae in the Guokui Mountain,Heilongjiang Province.Collections were made from May 2023 to August 2024 using the light-tra...This paper conducted a systematic survey and zoogeographical region analysis of the family Sphingidae in the Guokui Mountain,Heilongjiang Province.Collections were made from May 2023 to August 2024 using the light-trap method.A total of 14 species and 11 subspecies from 18 genera and three subfamilies were recorded.One species(Ambulyx tobii)and two subspecies(Ambulyx japonica koreana and Clanis undulosa undulosa)were new records for Heilongjiang Province.The study showed that the subfamily Smerinthinae had the most species(subspecies),while the subfamily Sphinginae had the fewest.Among the world's zoogeographical region,most species(subspecies)in the Guokui Mountain belonged to the palearctic region,with eight species and seven subspecies were also found in the oriental region.This indicated a close biogeographic connection between the two regions.Among the Chinese zoogeographical regions,the northeastern territory,northern territory and northwestern territory had the most abundant species(subspecies).It was also found that the distribution pattern types of hawkmoths in the Guokui Mountain were diverse,with the'northeastern territory-northern territory-northwestern territory'and'northeastern territory-northern territorynorthwestern territory-western plateau-southwestern territory-central territory-southeastern territory'types having the most species(subspecies).In addition,the Guokui Mountain hawkmoths were mostly distributed interregionally.The distribution patterns that contained the northeastern territory were the most numerous,followed by the northern territory.The rich diversity of the family Sphingidae in the Guokui Mountain was closely related to the unique climate,environment and vegetation types in the area.The results could help to improve the biodiversity database of Heilongjiang Province and researches on hawkmoths.展开更多
The Altun and North Qaidam Mountains at the northern margin of Qinghai\|Tibet plateau are separated by the Altyn Tagh sinistral strike\|slip fault, which is one of the largest strike\|slip fault systems in the world a...The Altun and North Qaidam Mountains at the northern margin of Qinghai\|Tibet plateau are separated by the Altyn Tagh sinistral strike\|slip fault, which is one of the largest strike\|slip fault systems in the world and was considered as the key element in the escape tectonics model for Euraisa\|India continent\|continent collision.Recently,the eclogites within quratzifeldspathic gneisses or pelitic gneisses characterized by amphibolite\|facies paragenesis were discovered in the Altun and the North Qaidam Mountains(Fig.1). They occur as lens or boundins within the Altun Group and Dakendaban Group respectively which previously were considered as metamorphic basement of Tarim block and Qaidam block. Our studies indicate that the eclogites outcrop in both the Altun and North Qaidam Mountains show similar occurrences, associated country rocks, rock and mineral assemblages, p\|T\% estimates, geochemistryand protolith feature and ages of peak metamorphism (see table) . The garnet\|omphacite\|phengite geothermobarometer gave equilibrium condition of \%p\%=2 8~3 0GPa and t =820~850℃ for the Altun eclogite and p =2 8GPa and \%t\%=730℃ for North Qaidam eclogite respectively(Fig..2). These p\|T conditions are in the coesite stability field. Moreover, Po lycrystalline quartz pseudomorphs after coesite have been identified in the Dulan area, North Qaidam Mountains (Song et al, in review). Therefore, these features suggest that both eclogites of Altun and North Qaidam Mountains probably are a same HP\|UHP metamorphic belt formed from the same of Early Paleozoic age deep subduction and collision, and subsequently displaced by the Altyn Tagh fault.The case is similar to the Dabie\|Sulu HP\|UHP metamorphic zone which was truncated by the Tanlu sinistral strike\|slip fault and splitted it into two distincts, the Dabie region and Sulu region. These correlations support an about 350~400km displacement of the Altyn Tagh sinistral strike\|slip fault (Fig.1).展开更多
Whilst the topographic relief of the Tibetan Plateau’s northeast margin reflects recent Himalayan Orogenesis, its position and geometry reflect much older structures that developed during the Indosinian Orogeny c.200...Whilst the topographic relief of the Tibetan Plateau’s northeast margin reflects recent Himalayan Orogenesis, its position and geometry reflect much older structures that developed during the Indosinian Orogeny c.200Ma. The Indosinian Orogeny was responsible for closure and shortening of the Songpan Garzê Basin, a Palaeo\|Tethyan relict, during accretion of the Cimmerian Continental Chain to the southern margin of Laurasia. Sandwiched between Laurasia and the Cimmerian fragments of the Qangtang (North Tibet) and Yangtze (South China) blocks, this basin evolved into the Songpan Garzê Fold Belt—a major accretionary prism which now forms the northeast portion of the Tibetan Plateau.展开更多
文摘The age of mineralization in a mining area is a primary factor in various researches related to ore\|forming process. It is that the uncertainty of mineralization ages of gold ore deposits in northern zone of eastern Kunlun Mountains, Qinghai Province, restrains to probe the relationship of the deposits to the regional tectonic evolution. This paper documents the fission track method used to determine the ages of gold ore deposits in eastern Kunlun Mountains and considers the implication for the origin of the deposits.Eastern Kunlun Mountains is the northern part of the Qinghai—Tibet Plateau and is of three deep\|seated fault belts in about EW extension. This work mainly includes three gold ore districts. All of them, in the north of Mid\|Kunlun fault belt, belong to northern part of eastern Kunlun Mountains. The Yanjingou district, with geographical coordinate 96°00’E and 36°10’N, is located 60 km north of Hongqigou district . Both of them are large, typical tectonoalteration gold deposits and were formed in similar geological setting. Hongshuihe ore district is located 50 km east of Yanjingou district and includes tectonoalteration and magmatic cryptoexplosive gold deposits. Outcroped strata are dominantly Jinshuikou Group metamorphic rocks of Lower Proterozoic erathem. The occurrence area of igneous rocks, especially granitoid, accounts for about 90% in first two districts and become less in Hongshuihe district. The gold deposits occur in NW\|striking fault belts. The Rb\|Sr isochron age and K\|Ar isotopic age of Moyite relevant to the gold mineralization are respectively 228 25Ma and 207 1Ma. Rb\|Sr dating of diorite porphyrite is 209 09Ma. Sericite selected from Yanjingou orebody has 252 9Ma K\|Ar age. The ore in Hongqigou district has 197Ma K\|Ar age and 210Ma model age of Pb isotope of galena.
文摘The Ediacarian volcanic series from the Lac Ifni sector are composed of a large variety of rocks from basalts and rhyolites to intermediates facies such as andesites,rhyodacites and pyroclastites.All these rocks are intruded by dolerite dikes.Secondary processes are reflected by total serpentinization of olivine within basic andesite and by albitization
文摘Glacially driven chemical weathering could make concentration of CO\-2 in the atmosphere decrease, and the process might play a significant role in climate change and the carbon cycle. So the study of chemical components and their contents of glacial meltwater in an alpine glacier\|covered catchment has important geochemical and climatological significance.
文摘Laji Shan is located in the eastern part of Qinghai Province,sandwiched between Xining and Hualong Basins.It is about 250km long and 10~20km wide from Riyueshan in the west to Minheguanting in the east.Laji Shan belongs to the Caledonian orogenic belt.Its basement consists of the rocks of Palaeo\|Protero zoic Hualong Group (Pt 1 hl ) and Neo\|Proterozoic Huangzhong Group (Pt\-3 h ).There are ptygmatic folds,closely linear type folds,strongly structural d ifferentiation and schistosity developed,suggesting that the basement underwent deep seated ductile deformation.The main part of Laji Shan is composed of Early\|Palaeozoic marine facies volcanic rocks and clastic sedimentary rocks,and suffered greenschist facies metamorphism and brittle\|ductile deformation.Others are composed of Ea rly\|Palaeozoic basic and ultrabasic rocks,intermediate\|acidic intruded rocks a nd dike rocks.Devonian molasse formation in Laji Shan is in uncomfortable contac t with underlying strata.Jurassic and Cretaceous systems are intermont basin dep osits,corresponding to a cover.
文摘The Kunlun Mountains is situated in the north margin of the Tibetan plateau and is one of crucial areas for unraveling the tectonic evolutionary history of the plateau and Eurasia. However, there is no widely accepted model for this area. One of the reasons is that some basic issues for the tectonic reconstruction have not been well settled, they are: (1) Is the Kunlun Mountains an ancient accretion prism, or a mini continent with old basement?(2) What is the age of the Kudi ophiolite, early Paleozoic or late Paleozoic?(3) When did the South Kunlun Block accrete to the Tarim Block?(4) Do the fifth and the forth sutures represent different oceans, or they are just the chronologically different relics of the same ocean?(5) Did the Kunlun Mountains experience continuous subduction since Neoproterozoic?(6) When did the Paleo\|Tethys closed in the West Kunlun range?
文摘The Longmen Mountains and adjacent regions on the eastern margin of the Tibetan plateau can be divided into three tectonic units: the eastern Songpan—Garzê fold belt, the Longmen Mountains (Longmen Shan) Thrust—Nappe belt and the Western Sichuan foreland basin that occupies the western part of the Sichuan basin. The Longmen Shan Thrust—Nappe belt is subdivided by six northwest\|dipping major listric thrusts, with accompanying duplexes and imbricate fans, into five large\|scale nappes (Chen & Wilson, 1996). In the inner Longmen Shan, the nappe units have incorporated both Mesoproterozoic basement and Sinian (Neoproterozoic) to Triassic cover sequences as “thick\|skinned" horses. Whereas, in the frontal Longmen Shan, Sinian to Cretaceous cover sediments have been stripped from the basement as “thin\|skinned" fold and thrust sheets, including extensively distributed klippen structures. Pre\|thrusting extension during Devonian to middle Late Triassic times resulted in syndepositional normal faults. Structural inversion of these faults initiated the “Peng Xian—Guan Xian basement complex", Jiuding Shan and Tangwangzhai nappes, during an early episode of the Indosinian Orogeny (Norian to Rhaetian). This was followed by episodic thrusting during latest Triassic to Early Cretaceous times to develop the Guan Xian—An Xian and Southeastern Marginal nappes that have incorporated sediments from the neighbouring foreland basin into the frontal part of the Thrust—Nappe belt. Differential thrusting occurred across the Thrust—Nappe belt during a Late Miocene reactivation of the pre\|existing faults.
基金Supported by the National Key R&D Plan(2018YFC1506500)Open Research Fund Project of Key Laboratory of Ecological Environment Meteorology of Qinling Mountains and Loess Plateau of Shaanxi Provincial Meteorological Bureau(2020Y-13)+1 种基金Open Research Fund of Shangluo Key Laboratory of Climate Adaptable City(SLSYS2022007)Shangluo Demonstration Project of Qinling Ecological Monitoring Service System(2020-611002-74-01-006200)。
文摘The study of land surface temperature(LST)is of great significance for ecosystem monitoring and ecological environmental protection in the Qinling Mountains of China.In view of the contradicting spatial and temporal resolutions in extracting LST from satellite remote sensing(RS)data,the areas with complex landforms of the Eastern Qinling Mountains were selected as the research targets to establish the correlation between the normalized difference vegetation index(NDVI)and LST.Detailed information on the surface features and temporal changes in the land surface was provided by Sentinel-2 and Sentinel-3,respectively.Based on the statistically downscaling method,the spatial scale could be decreased from 1000 m to 10 m,and LST with a Sentinel-3 temporal resolution and a 10 m spatial resolution could be retrieved.Comparing the 1 km resolution Sentinel-3 LST with the downscaling results,the 10 m LST downscaling data could accurately reflect the spatial distribution of the thermal characteristics of the original LST image.Moreover,the surface temperature data with a 10 m high spatial resolution had clear texture and obvious geomorphic features that could depict the detailed information of the ground features.The results showed that the average error was 5 K on April 16,2019 and 2.6 K on July 15,2019.The smaller error values indicated the higher vegetation coverage of summer downscaling result with the highest level on July 15.
文摘A new cranium and two mandibles of Ailuropoda melanoleuca from Xiangxi,Hunan Province are described here.The materials were discovered in a karst cave on the Bamian Mountain at an altitude of 1200 m,with AMC carbon-fourteen isotope dating indicating an age of 2800±30 BP.Historically,the giant panda was widely distributed in southern China and parts of Southeast Asia during the Pleistocene epoch,but it is now confined and isolated to six mountain ranges in southwest China’s Sichuan,Shaanxi,and Gansu provinces.The subfossil materials reported here represent the first discovery of the living species of giant panda in Xiangxi,Hunan.This extends their geographical distribution in southern China during the Holocene epoch eastward to the eastern edge of the Yunnan-Guizhou Plateau and their recent altitude range down to 1200 m.
文摘Prediction of water inflow into a tunnel is a crucial prerequisite for the waterproof and drainage design of mountain tunnels in water-rich areas.Based on the proposed Baiyun Mountain Tunnel project in Guangzhou,a numerical percolation model of random fractured rock of a tunnel underpassing a water reservoir is established to study the seepage characteristics of surrounding rock,the law of water inflow,and the change of lining water pressure,considering the local artificial boundary conditions for seepage in large rock mass,.In addition,the influences of rock permeability,fracture aperture,grouting circle thickness,and penetration are analyzed.The results show that:(1)Only fractures with aperture wider than 0.1 mm can play a significant role in water conduction in rocks with the permeability lower than 10^(-11)m^(2);(2)The greater the permeability difference between the fractures and rocks,the more remarkable the effects of fractures on the surrounding rock seepage field and cavern water inflow;(3)The sensitivity of grouting waterproof function to grouting circle thickness,grouting ring penetration,and rock permeability is significantly higher than that of tunnel buried depth and fracture aperture;(4)The lining water head is much more sensitive to the grouting circle thickness and penetration than to the tunnel buried depth;(5)With the grouting range enlarging,the impact of grouting circle permeability on the precipitation pressure role of the grouting ring increases;(6)For the interesting tunnel designed to be built at the depth of 70 m,the grouting circle with the thickness of 0.5 m and permeability of 10-^(14)m^(2)is recommended.
基金Supported by the Department of Ecology and Environment of Heilongjiang Province(HST2022ST003)。
文摘This paper conducted a systematic survey and zoogeographical region analysis of the family Sphingidae in the Guokui Mountain,Heilongjiang Province.Collections were made from May 2023 to August 2024 using the light-trap method.A total of 14 species and 11 subspecies from 18 genera and three subfamilies were recorded.One species(Ambulyx tobii)and two subspecies(Ambulyx japonica koreana and Clanis undulosa undulosa)were new records for Heilongjiang Province.The study showed that the subfamily Smerinthinae had the most species(subspecies),while the subfamily Sphinginae had the fewest.Among the world's zoogeographical region,most species(subspecies)in the Guokui Mountain belonged to the palearctic region,with eight species and seven subspecies were also found in the oriental region.This indicated a close biogeographic connection between the two regions.Among the Chinese zoogeographical regions,the northeastern territory,northern territory and northwestern territory had the most abundant species(subspecies).It was also found that the distribution pattern types of hawkmoths in the Guokui Mountain were diverse,with the'northeastern territory-northern territory-northwestern territory'and'northeastern territory-northern territorynorthwestern territory-western plateau-southwestern territory-central territory-southeastern territory'types having the most species(subspecies).In addition,the Guokui Mountain hawkmoths were mostly distributed interregionally.The distribution patterns that contained the northeastern territory were the most numerous,followed by the northern territory.The rich diversity of the family Sphingidae in the Guokui Mountain was closely related to the unique climate,environment and vegetation types in the area.The results could help to improve the biodiversity database of Heilongjiang Province and researches on hawkmoths.
文摘The Altun and North Qaidam Mountains at the northern margin of Qinghai\|Tibet plateau are separated by the Altyn Tagh sinistral strike\|slip fault, which is one of the largest strike\|slip fault systems in the world and was considered as the key element in the escape tectonics model for Euraisa\|India continent\|continent collision.Recently,the eclogites within quratzifeldspathic gneisses or pelitic gneisses characterized by amphibolite\|facies paragenesis were discovered in the Altun and the North Qaidam Mountains(Fig.1). They occur as lens or boundins within the Altun Group and Dakendaban Group respectively which previously were considered as metamorphic basement of Tarim block and Qaidam block. Our studies indicate that the eclogites outcrop in both the Altun and North Qaidam Mountains show similar occurrences, associated country rocks, rock and mineral assemblages, p\|T\% estimates, geochemistryand protolith feature and ages of peak metamorphism (see table) . The garnet\|omphacite\|phengite geothermobarometer gave equilibrium condition of \%p\%=2 8~3 0GPa and t =820~850℃ for the Altun eclogite and p =2 8GPa and \%t\%=730℃ for North Qaidam eclogite respectively(Fig..2). These p\|T conditions are in the coesite stability field. Moreover, Po lycrystalline quartz pseudomorphs after coesite have been identified in the Dulan area, North Qaidam Mountains (Song et al, in review). Therefore, these features suggest that both eclogites of Altun and North Qaidam Mountains probably are a same HP\|UHP metamorphic belt formed from the same of Early Paleozoic age deep subduction and collision, and subsequently displaced by the Altyn Tagh fault.The case is similar to the Dabie\|Sulu HP\|UHP metamorphic zone which was truncated by the Tanlu sinistral strike\|slip fault and splitted it into two distincts, the Dabie region and Sulu region. These correlations support an about 350~400km displacement of the Altyn Tagh sinistral strike\|slip fault (Fig.1).
文摘Whilst the topographic relief of the Tibetan Plateau’s northeast margin reflects recent Himalayan Orogenesis, its position and geometry reflect much older structures that developed during the Indosinian Orogeny c.200Ma. The Indosinian Orogeny was responsible for closure and shortening of the Songpan Garzê Basin, a Palaeo\|Tethyan relict, during accretion of the Cimmerian Continental Chain to the southern margin of Laurasia. Sandwiched between Laurasia and the Cimmerian fragments of the Qangtang (North Tibet) and Yangtze (South China) blocks, this basin evolved into the Songpan Garzê Fold Belt—a major accretionary prism which now forms the northeast portion of the Tibetan Plateau.