To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.Fir...To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.展开更多
A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the chara...A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the characteristic relationship between the gray level of each pixel and the average value of its neighborhood. When the threshold is not located at the obvious and deep valley of the histgram, genetic algorithm is devoted to the problem of selecting the appropriate threshold value. The experimental results indicate that the proposed method has good performance.展开更多
建立含风电系统的环境经济调度(Environmental Economic Dispatch,EED)模型,提出采用基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)来求解,并在算法中加入约束处理,归一化及变异操...建立含风电系统的环境经济调度(Environmental Economic Dispatch,EED)模型,提出采用基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)来求解,并在算法中加入约束处理,归一化及变异操作来改善算法的性能并保持解的多样性,以获得理想的Pareto最优前沿.通过仿真计算,并与其他优化算法进行对比分析,验证了MOEA/D算法解决含风电EED问题的可行性和有效性.展开更多
为了实现柔性作业车间完工时间、机器负荷、交货延期时间、车间能耗等多个目标的联合优化,提出了基于自适应惩罚MOEA/D(multi-objective evolutionary algorithm based on decomposition)的柔性车间多目标调度方法。对具有多个生产机床...为了实现柔性作业车间完工时间、机器负荷、交货延期时间、车间能耗等多个目标的联合优化,提出了基于自适应惩罚MOEA/D(multi-objective evolutionary algorithm based on decomposition)的柔性车间多目标调度方法。对具有多个生产机床、多个加工任务、多道工序的柔性车间调度问题进行了描述并建立了优化模型。给出了基于MOEA/D算法的柔性车间调度方法,针对常值惩罚因子无法满足不同邻域对收敛性和染色体多样性不同调整需求的问题,提出了能够随邻域染色体密度自适应调整的惩罚因子,并制定了基于自适应惩罚MOEA/D算法的柔性车间调度流程。在具有8个机床、8个工件共28道工序的生产调度实验中,自适应MOEA/D算法搜索的Pareto前沿解能够支配标准MOEA/D和改进NSGA-Ⅱ算法的Pareto前沿解;在等权重最优解的生产实验中,自适应MOEA/D算法调度方案的完工时间、机器负荷、交货延期时间、车间能耗均小于标准MOEA/D算法和改进NSGA-Ⅱ算法。实验结果证明了自适应惩罚MOEA/D算法在柔性车间调度中的有效性和优越性。展开更多
针对具有不同加工流程信息的多类型零件的单元构建问题,建立了最大化机器利用率和成组效率的多目标单元构建数学规划模型。在此基础上,提出一种改进MOEA/D算法(improved multi-objective evolutionary algorithm based on decomposition...针对具有不同加工流程信息的多类型零件的单元构建问题,建立了最大化机器利用率和成组效率的多目标单元构建数学规划模型。在此基础上,提出一种改进MOEA/D算法(improved multi-objective evolutionary algorithm based on decomposition,IMOEA/D)。剖析模型特征,设计了面向机器分配和零件划分的双层编码策略;为了保证算法迭代的有效性,设计了初始化筛选方法和考虑各制造单元间机器零件平衡性的非法解修复策略;为了增强算法的局部探索能力,设计了基于模拟退火算法的局部搜索方法。实验结果表明所提算法具有优越的性能,获得的Pareto前沿解在覆盖率和Pareto比率两个指标上表现较优,且随着问题规模的扩大,其Pareto前沿优势更加明显。展开更多
基金Project(60925011) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(9140A06040510BQXXXX) supported by Advanced Research Foundation of General Armament Department,China
文摘To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.
基金This project was supported by Science and Technology Research Emphasis Fund of Ministry of Education(204010) .
文摘A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the characteristic relationship between the gray level of each pixel and the average value of its neighborhood. When the threshold is not located at the obvious and deep valley of the histgram, genetic algorithm is devoted to the problem of selecting the appropriate threshold value. The experimental results indicate that the proposed method has good performance.
文摘建立含风电系统的环境经济调度(Environmental Economic Dispatch,EED)模型,提出采用基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)来求解,并在算法中加入约束处理,归一化及变异操作来改善算法的性能并保持解的多样性,以获得理想的Pareto最优前沿.通过仿真计算,并与其他优化算法进行对比分析,验证了MOEA/D算法解决含风电EED问题的可行性和有效性.
文摘为了实现柔性作业车间完工时间、机器负荷、交货延期时间、车间能耗等多个目标的联合优化,提出了基于自适应惩罚MOEA/D(multi-objective evolutionary algorithm based on decomposition)的柔性车间多目标调度方法。对具有多个生产机床、多个加工任务、多道工序的柔性车间调度问题进行了描述并建立了优化模型。给出了基于MOEA/D算法的柔性车间调度方法,针对常值惩罚因子无法满足不同邻域对收敛性和染色体多样性不同调整需求的问题,提出了能够随邻域染色体密度自适应调整的惩罚因子,并制定了基于自适应惩罚MOEA/D算法的柔性车间调度流程。在具有8个机床、8个工件共28道工序的生产调度实验中,自适应MOEA/D算法搜索的Pareto前沿解能够支配标准MOEA/D和改进NSGA-Ⅱ算法的Pareto前沿解;在等权重最优解的生产实验中,自适应MOEA/D算法调度方案的完工时间、机器负荷、交货延期时间、车间能耗均小于标准MOEA/D算法和改进NSGA-Ⅱ算法。实验结果证明了自适应惩罚MOEA/D算法在柔性车间调度中的有效性和优越性。
文摘针对具有不同加工流程信息的多类型零件的单元构建问题,建立了最大化机器利用率和成组效率的多目标单元构建数学规划模型。在此基础上,提出一种改进MOEA/D算法(improved multi-objective evolutionary algorithm based on decomposition,IMOEA/D)。剖析模型特征,设计了面向机器分配和零件划分的双层编码策略;为了保证算法迭代的有效性,设计了初始化筛选方法和考虑各制造单元间机器零件平衡性的非法解修复策略;为了增强算法的局部探索能力,设计了基于模拟退火算法的局部搜索方法。实验结果表明所提算法具有优越的性能,获得的Pareto前沿解在覆盖率和Pareto比率两个指标上表现较优,且随着问题规模的扩大,其Pareto前沿优势更加明显。