期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
超高强度A柱加强板热冲压质量自适应MOEA/D优化
1
作者 裴宝浩 肖振 +1 位作者 周娟 于蓬 《机械设计与制造》 北大核心 2025年第9期255-259,265,共6页
为了提高超高强度A柱加强板热冲压成形质量,提出了基于自适应MOEA/D算法的冲压参数多目标优化方法。使用数值模拟法分析了超高强度A柱加强板热冲压质量问题,并针对最大减薄率和最大增厚率建立了多目标优化模型。在仿真数据基础上,使用Kr... 为了提高超高强度A柱加强板热冲压成形质量,提出了基于自适应MOEA/D算法的冲压参数多目标优化方法。使用数值模拟法分析了超高强度A柱加强板热冲压质量问题,并针对最大减薄率和最大增厚率建立了多目标优化模型。在仿真数据基础上,使用Kriging模型拟合了质量参数与工艺参数间模型。将优化变量编码为基因,从而将冲压优化问题转化为算法寻优问题。为了提高MOEA/D算法的优化能力,在算法中引入了自适应差异性惩罚方案,进而提出了基于自适应MOEA/D算法的优化方法。经生产优化,优化后产品的金相组织实现了预期变化,最大减薄率均值由17.1%减小为14.5%,最大增厚率均值由18.1%减小为15.7%,实验结果证明了自适应MOEA/D优化算法的优越性。 展开更多
关键词 超高强度 A柱加强板 冲压优化 moea/d算法 自适应差异性惩罚方案
在线阅读 下载PDF
基于多目标进化算法混合框架的MOEA/D算法 被引量:7
2
作者 田红军 汪镭 吴启迪 《系统仿真学报》 CAS CSCD 北大核心 2020年第2期201-216,共16页
针对混合多目标进化算法中如何设计全局搜索算法和局部搜索策略结合机制的难点问题以及提高多目标进化算法的求解性能,基于反馈控制思想,提出了一种系统化、模块化的全局优化与局部搜索相结合的混合MOEA/D算法,算法中设计了一种基于拥... 针对混合多目标进化算法中如何设计全局搜索算法和局部搜索策略结合机制的难点问题以及提高多目标进化算法的求解性能,基于反馈控制思想,提出了一种系统化、模块化的全局优化与局部搜索相结合的混合MOEA/D算法,算法中设计了一种基于拥挤熵的种群多样性度量方法;提出了基于简化二次逼近的局部搜索策略,以及针对MOEA/D的种群多样性增强策略。数值实验表明所提算法具有良好性能,可以兼顾算法求解的多样性和收敛性,所提混合框架可有效提升现有多目标进化算法的求解性能。 展开更多
关键词 多目标优化 进化算法 混合框架 moea/d 反馈控制
在线阅读 下载PDF
基于改进MOEA/D的车联网通信资源分配算法 被引量:4
3
作者 郑丽萍 赵玉娟 费选 《计算机工程》 CAS CSCD 北大核心 2023年第5期191-197,共7页
为获得车联网通信资源分配的最优解,提出一种基于改进MOEA/D的车联网通信资源分配优化算法。将车联网资源请求的阻塞率和资源请求成功的总成本这2个相互冲突的网络通信资源分配要素作为网络通信资源分配的2个优化目标,根据车联网中行驶... 为获得车联网通信资源分配的最优解,提出一种基于改进MOEA/D的车联网通信资源分配优化算法。将车联网资源请求的阻塞率和资源请求成功的总成本这2个相互冲突的网络通信资源分配要素作为网络通信资源分配的2个优化目标,根据车联网中行驶车辆的特点,对请求资源车辆和提供资源车辆设置约束条件。在此基础上,采用自适应邻域策略平衡进化过程中种群的收敛性和分布性,并将迭代次数引入自适应度,调节交叉算子和变异算子,使种群中较差的个体也具有遗传性,从而保证种群的多样性。同时,随着迭代次数的增加,种群中较差个体遗传性降低,较好个体遗传能力增强,从而保证种群的优化。仿真结果表明,该算法针对最小化阻塞率和最小化成本这2个目标能够获得满意的优化效果,在迭代次数、车辆数和资源请求数变化情况下都存在最优解,在相同迭代次数下,与基于支配的多目标算法SPEA2和NSGA-II相比具有较低的阻塞率和较好的收敛性。 展开更多
关键词 车联网 通信资源分配 多目标进化算法 moea/d算法 阻塞率 成本
在线阅读 下载PDF
一种新的MOEA/D中邻域更新策略研究 被引量:4
4
作者 周欢 王丽萍 +1 位作者 林梦嫚 江波 《小型微型计算机系统》 CSCD 北大核心 2017年第4期852-856,共5页
MOEA/D算法使用聚合方法将多目标问题分解成单目标问题并行进化.然而,在优化的过程中,子代在固定的邻域内替换父代,并没有考虑固定邻域不利于算法选择较合适的父代参与繁殖.针对此问题,提出一种新的邻域更新策略.首先,利用各子问题的解... MOEA/D算法使用聚合方法将多目标问题分解成单目标问题并行进化.然而,在优化的过程中,子代在固定的邻域内替换父代,并没有考虑固定邻域不利于算法选择较合适的父代参与繁殖.针对此问题,提出一种新的邻域更新策略.首先,利用各子问题的解,求出该解与所有权重向量的聚合函数值,以这些聚合函数值作为参考信息,更新父代解;其次,利用该参考信息,更新子问题对应的邻域结构.并将领域更新策略MOE/D算法应用子ZDT,DTLZ1-2等三个系列问题进行性能测试,并与M OEA/D、M OEA/D-GR算法进行性能对比.实验结果表明,与M OEA/D和M OEA/D-GR算法相比,结合邻域更新的M OEA/D策略,算法的收敛性明显提高. 展开更多
关键词 多目标优化 moea/d 全局替换 邻域更新
在线阅读 下载PDF
基于动态多策略差分进化模型的MOEA/D算法 被引量:3
5
作者 林震 侯杏娜 韦晓虎 《计算机应用研究》 CSCD 北大核心 2017年第9期2624-2628,共5页
在基于分解技术的多目标进化算法的框架中,引入一种动态多策略差分进化模型。该模型在分析不同差分进化策略的特点基础上,选择了三种差分进化策略,并对每种策略分配一子种群。在进化过程中,依据每种策略对邻域更新的贡献度,动态地调整... 在基于分解技术的多目标进化算法的框架中,引入一种动态多策略差分进化模型。该模型在分析不同差分进化策略的特点基础上,选择了三种差分进化策略,并对每种策略分配一子种群。在进化过程中,依据每种策略对邻域更新的贡献度,动态地调整其子种群的大小。对比分析采用不同差分进化算法的性能,结果表明运用多个策略之间相互协同进化,有利于提高算法性能。将新算法同NSGA-Ⅱ与MOEA/D算法在LZ09系列基准函数上进行性能对比,实验结果显示该算法的收敛性和多样性均优于对比算法。将新应用于Ⅰ型梁多目标优化设计问题中,获得的Pareto前沿均匀,且解集域较宽广,对比分析表明了算法的工程实用性。 展开更多
关键词 moea/d 多目标优化 多策略差分进化 动态子种群 I型梁设计
在线阅读 下载PDF
采用MOEA/D算法的含风电系统环境经济调度 被引量:2
6
作者 朱永胜 王杰 《郑州大学学报(工学版)》 CAS 北大核心 2014年第4期96-100,共5页
建立含风电系统的环境经济调度(Environmental Economic Dispatch,EED)模型,提出采用基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)来求解,并在算法中加入约束处理,归一化及变异操... 建立含风电系统的环境经济调度(Environmental Economic Dispatch,EED)模型,提出采用基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)来求解,并在算法中加入约束处理,归一化及变异操作来改善算法的性能并保持解的多样性,以获得理想的Pareto最优前沿.通过仿真计算,并与其他优化算法进行对比分析,验证了MOEA/D算法解决含风电EED问题的可行性和有效性. 展开更多
关键词 风电 环境经济调度 多目标进化算法 moea d PARETO最优前沿
在线阅读 下载PDF
EMOEA/D-DE算法在卫星有效载荷配置中的应用 被引量:1
7
作者 李晖 袁文兵 熊慕舟 《计算机应用》 CSCD 北大核心 2014年第8期2424-2428,共5页
针对卫星有效载荷配置问题,提出了一种基于差分进化分解的改进多目标优化算法(EMOEA/D-DE)的有效载荷配置模型。该模型将配置问题转化为以卫星数、卫星冗余度为目标的多目标优化问题(MOP),并采用EMOEA/D-DE进行求解。此外,针对随机均匀... 针对卫星有效载荷配置问题,提出了一种基于差分进化分解的改进多目标优化算法(EMOEA/D-DE)的有效载荷配置模型。该模型将配置问题转化为以卫星数、卫星冗余度为目标的多目标优化问题(MOP),并采用EMOEA/D-DE进行求解。此外,针对随机均匀初始化会导致种群在目标空间分布过于集中的问题,采用与优化目标相结合的随机初始化方法进行改进。实验结果表明,该模型所求解集的平均差异性在0.05以内,分布度值在0.9以上,具有较好的稳定性及分布性,且改进后的算法收敛速度提升近1倍,所求解的近似Pareto前沿相对更优。 展开更多
关键词 卫星有效载荷配置 多目标优化问题 moea d Emoea d-dE 种群初始化
在线阅读 下载PDF
基于自适应进化策略的MOEA/D算法 被引量:7
8
作者 耿焕同 周山胜 +1 位作者 韩伟民 周利发 《计算机工程与设计》 北大核心 2019年第4期1106-1113,共8页
针对MOEA/D算法单纯使用差分进化策略造成局部搜索能力弱、寻优精度低等问题,提出一种基于自适应进化策略的MOEA/D算法(MOEA/D-EA)。利用种群邻域更新信息构造进化状态判断机制,判断子问题的进化潜能和种群的进化状态;将子问题的进化潜... 针对MOEA/D算法单纯使用差分进化策略造成局部搜索能力弱、寻优精度低等问题,提出一种基于自适应进化策略的MOEA/D算法(MOEA/D-EA)。利用种群邻域更新信息构造进化状态判断机制,判断子问题的进化潜能和种群的进化状态;将子问题的进化潜能正反馈到反向学习模型,形成自适应的反向学习策略(AOBL);根据种群的进化状态选择不同的进化策略,以均衡算法的全局搜索与局部寻优能力。实验结果表明,该算法在收敛性、分布性和稳定性等方面均优于或部分优于其它对比算法。 展开更多
关键词 moea/d算法 进化潜能判断 反向学习 自适应进化策略 多目标优化算法
在线阅读 下载PDF
基于多级协同MOEA/D的联合火力打击目标分配方法 被引量:6
9
作者 陈晖 马亚平 《系统仿真学报》 CAS CSCD 北大核心 2018年第8期2942-2949,共8页
将不同火力打击资源进行组合,并分配给打击目标,是筹划联合火力打击作战需要解决的关键问题之一。针对联合火力打击目标分配问题的特点,综合考虑打击顺序、毁伤等级、威胁、效费比、战损等因素,建立了联合火力打击目标分配问题的多目标... 将不同火力打击资源进行组合,并分配给打击目标,是筹划联合火力打击作战需要解决的关键问题之一。针对联合火力打击目标分配问题的特点,综合考虑打击顺序、毁伤等级、威胁、效费比、战损等因素,建立了联合火力打击目标分配问题的多目标优化模型。将MOEA/D和多级协同进化框架相结合,提出利用多级协同MOEA/D算法求解目标分配的多目标优化模型,并设计了相关的遗传进化机制。仿真结果表明,所提出的算法具有良好的收敛性和均匀性。 展开更多
关键词 联合火力打击 目标分配 多级协同进化 多目标分解进化
在线阅读 下载PDF
改进自适应MOEA/D算法的楼宇负荷优化调度 被引量:7
10
作者 易灵芝 林佳豪 +2 位作者 刘建康 罗显光 李旺 《计算机工程与应用》 CSCD 北大核心 2022年第2期295-302,共8页
针对负荷侧用户用电电费、新能源消纳率和用电峰谷差等问题,提出了一种改进的自适应基于分解的多目标进化算法,进行楼宇微电网签约住户可控负荷优化调度;通过分析负荷的用电特性,将用电负荷分为五类并分类建立数学模型、优化目标函数和... 针对负荷侧用户用电电费、新能源消纳率和用电峰谷差等问题,提出了一种改进的自适应基于分解的多目标进化算法,进行楼宇微电网签约住户可控负荷优化调度;通过分析负荷的用电特性,将用电负荷分为五类并分类建立数学模型、优化目标函数和约束条件;将广义分解与均匀分配相结合产生新的自适应权重向量使算法非支配解更接近真实帕累托前沿;采用历史经验的思想通过计数SBX和DE两种交叉算子对外部存档的贡献率,运用轮盘赌的方式实现自适应选择策略;通过特性约束条件映射对产生的子代点进行修正,间接地扩大了算法搜索空间,提高了种群多样性。通过测试函数验证了改进的AWS-MOEA/D算法的收敛性和优越性;在某小区楼宇住户调度仿真实验结果表明,所改进的算法在调度后能节省更多的电费,并有效地提高了新能源消纳率。 展开更多
关键词 楼宇微电网 自适应选择策略 自适应权重向量 基于分解的多目标进化算法(moea/d) 自动需求响应
在线阅读 下载PDF
基于MOEA/D多目标优化选择的预测学习框架 被引量:3
11
作者 蒋锋 杨嘉伟 《统计与决策》 CSSCI 北大核心 2021年第5期40-43,共4页
为提高大豆期货价格预测模型精度和泛化能力,文章提出一种基于MOEA/D多目标优化选择的预测学习框架。首先,利用完全集合经验模态分解(CEEMD)将序列分解为高频、低频和趋势序列;然后,使用差分自回归移动平均(ARIMA)、BP神经网络(BP)、回... 为提高大豆期货价格预测模型精度和泛化能力,文章提出一种基于MOEA/D多目标优化选择的预测学习框架。首先,利用完全集合经验模态分解(CEEMD)将序列分解为高频、低频和趋势序列;然后,使用差分自回归移动平均(ARIMA)、BP神经网络(BP)、回归决策树(CART)、极限学习机(ELM)、最小二乘支持向量机(LSSVM)分别预测各序列;再使用MOEA/D算法对各个模型进行多目标优化选择,并对各序列进行集成处理,得到预测结果。为验证预测学习框架的优越性,以芝加哥期货交易所大豆期货每分钟数据作为实证数据,并与10个基准模型进行对比。结果表明:所提出的预测学习框架具有更好的优越性,在精度、泛化能力和稳健性上均具有很好的效果。 展开更多
关键词 CEEMd分解 多目标优化 moea/d算法 集成策略
在线阅读 下载PDF
基于自适应MOEA/D的柔性车间多目标联合优化调度 被引量:3
12
作者 王玉巧 温承钦 刘智飞 《制造技术与机床》 北大核心 2023年第6期167-174,共8页
为了实现柔性作业车间完工时间、机器负荷、交货延期时间、车间能耗等多个目标的联合优化,提出了基于自适应惩罚MOEA/D(multi-objective evolutionary algorithm based on decomposition)的柔性车间多目标调度方法。对具有多个生产机床... 为了实现柔性作业车间完工时间、机器负荷、交货延期时间、车间能耗等多个目标的联合优化,提出了基于自适应惩罚MOEA/D(multi-objective evolutionary algorithm based on decomposition)的柔性车间多目标调度方法。对具有多个生产机床、多个加工任务、多道工序的柔性车间调度问题进行了描述并建立了优化模型。给出了基于MOEA/D算法的柔性车间调度方法,针对常值惩罚因子无法满足不同邻域对收敛性和染色体多样性不同调整需求的问题,提出了能够随邻域染色体密度自适应调整的惩罚因子,并制定了基于自适应惩罚MOEA/D算法的柔性车间调度流程。在具有8个机床、8个工件共28道工序的生产调度实验中,自适应MOEA/D算法搜索的Pareto前沿解能够支配标准MOEA/D和改进NSGA-Ⅱ算法的Pareto前沿解;在等权重最优解的生产实验中,自适应MOEA/D算法调度方案的完工时间、机器负荷、交货延期时间、车间能耗均小于标准MOEA/D算法和改进NSGA-Ⅱ算法。实验结果证明了自适应惩罚MOEA/D算法在柔性车间调度中的有效性和优越性。 展开更多
关键词 柔性车间 多目标调度 自适应惩罚因子 moea/d算法 染色体密度
在线阅读 下载PDF
基于MOEA/D的船舶水动力性能优化 被引量:9
13
作者 毕晓君 王朝 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2018年第10期1681-1687,1694,共8页
为了高效地求解船舶水动力性能优化问题,将基于分解技术的多目标进化算法应用到船舶设计领域,提出基于MOEA/D的船舶水动力性能多目标优化算法。建立了以快速性、耐波性和操纵性为3目标的优化模型;通过在MOEA/D算法中引入自适应约束处理... 为了高效地求解船舶水动力性能优化问题,将基于分解技术的多目标进化算法应用到船舶设计领域,提出基于MOEA/D的船舶水动力性能多目标优化算法。建立了以快速性、耐波性和操纵性为3目标的优化模型;通过在MOEA/D算法中引入自适应约束处理技术和目标值归一化机制,获得SHPO问题在可行域内的Pareto最优解集;利用模糊集理论为决策者提供最优折中解。采用本文算法对DTMB5415船型参数进行优化设计,并将其与另外两种基于多目标优化算法的设计方案进行对比。结果表明,该算法具有更好的收敛速度和求解精度。 展开更多
关键词 水动力性能 船型参数 多目标优化 快速性 耐波性 操纵性 基于分解的多目标进化算法 约束处理
在线阅读 下载PDF
基于R2-MOEA/D算法的顶板支护决策模型 被引量:2
14
作者 郝秦霞 汪连连 张金锁 《工矿自动化》 北大核心 2021年第10期77-84,共8页
现有的顶板支护决策方法或片面分析安全因素,或对指标客观赋予权重,未能有效分配权重系数,不能满足高维多目标顶板案例决策的需求。针对该问题,对顶板来压指标进行分析,提出了一种基于R2指标的差分高维多目标进化(R2-MOEA/D)算法的顶板... 现有的顶板支护决策方法或片面分析安全因素,或对指标客观赋予权重,未能有效分配权重系数,不能满足高维多目标顶板案例决策的需求。针对该问题,对顶板来压指标进行分析,提出了一种基于R2指标的差分高维多目标进化(R2-MOEA/D)算法的顶板支护决策模型。首先针对来压状态定义指标属性,建立顶板指标知识库,利用层次分析法和熵值法对知识库中的条件指标进行计算,得到指标的主观权重和客观权重;然后在确定主观、客观权重的基础上引入权重矩阵,构建基于R2-MOEA/D算法的顶板多目标决策模型;最后基于R2-MOEA/D算法将多目标问题分解成多个子问题,利用切比雪夫函数作为R2指标排序标准进行个体选择,得到收敛性和多样性较好的Pareto最优解,即相似度最高的条件指标顶板案例,其对应的结果属性为事故案例的决策提供了支护方案。实验结果表明:R2-MOEA/D算法与NSGA2算法、NSGA3算法、RVEA算法相比,在数据集的收敛性和分布性上整体效果最优,改善了高维空间中的搜索能力。通过山西霍州三交河煤矿2-6011巷道和10-4151巷道对基于R2-MOEA/D算法的顶板支护决策模型进行可行性评定,结果表明:由R2-MOEA/D算法检索出的解决方案符合该矿的实际支护情况。 展开更多
关键词 巷道支护 顶板来压 顶板支护 顶板指标知识库 R2-moea/d算法 综合权重法 条件指标 结果属性
在线阅读 下载PDF
机械臂多目标最优轨迹的自适应惩罚MOEA/D规划
15
作者 张科强 刘敏 《机械设计与制造》 北大核心 2024年第5期102-106,112,共6页
为了减少机械臂的工作时间和工作过程中的冲击量,提出了基于自适应惩罚MOEA/D算法的时间-冲击多目标规划方法。介绍了PUMA560机械臂结构,并建立了机械臂的连杆坐标系。建立了以减小机械臂工作时间和冲击为综合目标的优化模型,并分析了5... 为了减少机械臂的工作时间和工作过程中的冲击量,提出了基于自适应惩罚MOEA/D算法的时间-冲击多目标规划方法。介绍了PUMA560机械臂结构,并建立了机械臂的连杆坐标系。建立了以减小机械臂工作时间和冲击为综合目标的优化模型,并分析了5次多项式插值函数。通过编码和建立适应度函数,将轨迹规划问题转化为最优基因搜索问题。根据邻域内解的密度设置了自适应惩罚因子,提出了机械臂轨迹的自适应惩罚MOEA/D规划方法。经仿真验证,自适应惩罚MOEA/D算法搜索的Pareto前沿解质量高于标准MOEA/D算法、文献[10]新型MOEA/D算法。且经过优化,机械臂工作时间减少了7.68%,冲击减少了17.32%。实验结果表明,自适应惩罚MOEA/D算法在机械臂轨迹规划中具有优越性。 展开更多
关键词 机械臂 轨迹规划 插值函数 自适应惩罚因子 moea/d算法
在线阅读 下载PDF
一种基于新型差分进化模型的MOEA/D改进算法 被引量:2
16
作者 耿焕同 周利发 +1 位作者 丁洋洋 周山胜 《计算机工程与应用》 CSCD 北大核心 2019年第8期138-146,263,共10页
针对MOEA/D算法中差分进化操作收敛精度不高且速度较慢的不足,提出了一种综合基于可控支配域的向量差生成策略和基于主成分的动态缩放因子的新型差分进化模型,均衡显性与隐性搜索引导;并实现了一种基于新型差分进化模型的MOEA/D改进算法... 针对MOEA/D算法中差分进化操作收敛精度不高且速度较慢的不足,提出了一种综合基于可控支配域的向量差生成策略和基于主成分的动态缩放因子的新型差分进化模型,均衡显性与隐性搜索引导;并实现了一种基于新型差分进化模型的MOEA/D改进算法(MOEA/D-iDE)。新型差分进化是借助基于可控支配域的非支配排序对邻域进行分层,根据分层信息生成与不同进化阶段相匹配的向量差,实现对种群收敛速度的显性引导;同时对决策空间进行主成分分析,动态调整差分进化缩放因子,实现对种群收敛精度的隐性引导。实验选取ZDT、DTLZ和WFG等为测试问题,以IGD+,ER作为评价指标,将MOEA/D-iDE算法与6个同类算法进行对比实验,结果表明新算法在保证多样性的同时具有更好的收敛速度与精度,从而验证了新型差分进化模型的有效性。 展开更多
关键词 差分进化 可控支配域 主成分分析 基于分解的多目标进化算法
在线阅读 下载PDF
基于自适应邻域策略的改进型MOEA/D算法 被引量:2
17
作者 耿焕同 韩伟民 +1 位作者 丁洋洋 周山胜 《计算机工程》 CAS CSCD 北大核心 2019年第5期161-168,共8页
为避免传统MOEA/D算法使用固定领域规模易造成种群进化效率降低的情况,提出一种基于自适应邻域策略的改进算法。设计一种能够反映子问题进化幅度和种群进化状态的判断机制。针对进化过程中的收敛性和分布性需求,提出基于进化状态判断的... 为避免传统MOEA/D算法使用固定领域规模易造成种群进化效率降低的情况,提出一种基于自适应邻域策略的改进算法。设计一种能够反映子问题进化幅度和种群进化状态的判断机制。针对进化过程中的收敛性和分布性需求,提出基于进化状态判断的自适应邻域策略,从而根据种群和子问题的进化状态设定不同的邻域规模。使用WFG系列测试函数进行实验,结果表明,该算法能有效平衡进化过程中种群的收敛性与分布性,提高解集的整体性能。 展开更多
关键词 基于分解的多目标进化算法 邻域更新能力 进化状态 判断机制 自适应邻域策略
在线阅读 下载PDF
一种基于自适应选择策略的改进型MOEA/D算法
18
作者 耿焕同 丁洋洋 +1 位作者 周利发 韩伟民 《计算机科学》 CSCD 北大核心 2018年第5期201-207,214,共8页
针对MOEA/D单纯使用邻域更新作为选择策略而造成的个体解的重复更新、缺乏全局适配性等问题,提出了一种兼及全局替换和局部更新策略的新算法,即基于自适应选择策略的改进型MOEA/D(MOEA/D-AS)。算法首先设计了一种新的基于最佳二分图匹... 针对MOEA/D单纯使用邻域更新作为选择策略而造成的个体解的重复更新、缺乏全局适配性等问题,提出了一种兼及全局替换和局部更新策略的新算法,即基于自适应选择策略的改进型MOEA/D(MOEA/D-AS)。算法首先设计了一种新的基于最佳二分图匹配的选择策略(KMS),利用子问题和个体解的匹配关系,从全局角度实现精英个体集的最优选择;然后利用种群的进化信息构造一种匹配紊乱判断机制;最后利用紊乱判断机制,在综合分析邻域更新策略和KMS各自优势的基础上,使算法自适应地选择最合适的选择策略,以提高鲁棒性和优化效率。选取LZ09,DTLZ,CEC09等作为标准测试函数,将改进后的算法MOEA/D-AS与经典MOEA/D系列算法进行对比实验,并以Spread和IGD为性能评估指标。实验结果表明新算法具有更好的收敛性和分布性,验证了自适应选择策略能够有效地指导精英解的选择过程。 展开更多
关键词 moea/d 最佳二分图匹配 紊乱判断 自适应选择策略
在线阅读 下载PDF
基于正交设计的自适应ε占优MOEA/D算法研究 被引量:4
19
作者 周攀 张冬梅 +2 位作者 龚文引 李阳 刘凯伟 《计算机应用与软件》 CSCD 北大核心 2013年第2期58-64,124,共8页
MOEA/D是一种简单、高效的多目标优化算法,但在更新子问题时,会丢失部分优良个体,降低算法的收敛速度。针对上述不足,提出一种基于正交设计的自适应ε占优算法。新算法改进如下:(1)采用正交试验设计和连续空间量化初始化种群,使初始化... MOEA/D是一种简单、高效的多目标优化算法,但在更新子问题时,会丢失部分优良个体,降低算法的收敛速度。针对上述不足,提出一种基于正交设计的自适应ε占优算法。新算法改进如下:(1)采用正交试验设计和连续空间量化初始化种群,使初始化群体能均匀分布;(2)设计一种自适应调整松弛变量改进的ε占优机制,并用它来更新Archive种群保存非劣解;(3)将精英策略引入到MOEA/D中,加快收敛速度。实验结果表明新算法较好地改善了MOEA/D算法的收敛性以及非劣解的分布性。 展开更多
关键词 moea d 自适应ε占优 正交实验 多目标演化算法
在线阅读 下载PDF
MOEA/D线性插入方向向量策略研究 被引量:4
20
作者 林梦嫚 王丽萍 周欢 《小型微型计算机系统》 CSCD 北大核心 2020年第2期236-243,共8页
MOEA/D具有良好的收敛性、均匀的分布性、求解效率高等优点,普遍应用于求解多目标优化问题.然而对于Pareto前端复杂的多目标优化问题,预先设定均匀的权重向量并不能够维持Pareto最优解集的良好分布性.本文,首先分析均匀分布的权重向量... MOEA/D具有良好的收敛性、均匀的分布性、求解效率高等优点,普遍应用于求解多目标优化问题.然而对于Pareto前端复杂的多目标优化问题,预先设定均匀的权重向量并不能够维持Pareto最优解集的良好分布性.本文,首先分析均匀分布的权重向量、均匀分布的搜索方向二者与均匀分布的解集之间的关系,提出一种新的权重向量设置方式;其次基于进化过程中解集的分布,提出线性插入搜索方向策略,并将其转换为对应的权重向量,同时在MOEA/D中周期性应用该策略调整搜索方向,获取分布均匀的解集;最后将该算法在WFG系列测试问题上进行性能测试,并采用世代距离指标(GD)、Spacing指标(S)、超体积指标(HV)对算法收敛性和多样性进行对比分析,实验结果表明,与原始的MOEA/D、使用均匀分布的搜索方向MOEA/D、使用预处理的M OEA/D、M OEA/D-DU相比,改进的算法求出解集的多样性极大提高,收敛性明显增强,解集的整体质量显著提高. 展开更多
关键词 多目标优化 moea/d 均匀分布 线性插入
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部