期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于STL与MMoE多任务学习的区域多光伏电站超短期功率联合预测方法 被引量:12
1
作者 王本涛 白杨 +1 位作者 邢红涛 徐岩 《电力系统及其自动化学报》 CSCD 北大核心 2022年第9期17-23,31,共8页
随着光伏并网容量的不断增加,准确的光伏功率预测对电网安全稳定运行意义重大。本文提出一种基于季节性分解与MMoE多任务学习的区域多光伏电站超短期功率联合预测方法。首先,通过季节性分解获得光伏功率的周期分量、剩余分量与趋势分量... 随着光伏并网容量的不断增加,准确的光伏功率预测对电网安全稳定运行意义重大。本文提出一种基于季节性分解与MMoE多任务学习的区域多光伏电站超短期功率联合预测方法。首先,通过季节性分解获得光伏功率的周期分量、剩余分量与趋势分量。其次,提出MMoE-LSTM-Attention网络来挖掘同一区域内不同光伏电站剩余分量与趋势分量之间的相关性,进行剩余分量与趋势分量的预测。最后,将分量进行汇总,得到光伏电站超短期功率预测结果。相较于传统基于硬共享机制的多任务学习模型,MMoE模型能够自动调整任务目标和任务间关系的参数权重。注意力机制能够进一步优化子任务的特征提取能力。在DKASC数据集上进行了算例实测,分别验证了季节性分解、MMoE多任务学习模型及注意力机制在区域多光伏电站功率预测问题上的有效性。 展开更多
关键词 区域光伏功率预测 mmoe多任务学习 注意力机制 季节性分解
在线阅读 下载PDF
基于MMoE多任务学习和长短时记忆网络的综合能源系统负荷预测 被引量:30
2
作者 吴晨 姚菁 +3 位作者 薛贵元 王剑晓 吴垠 何凯 《电力自动化设备》 EI CSCD 北大核心 2022年第7期33-39,共7页
精确的多元负荷预测是实现综合能源系统优化调度与经济运行的关键技术。在考虑多元负荷相关性的基础上,提出一种基于MMoE多任务学习和长短时记忆网络(LSTM)的多元负荷预测方法。利用皮尔逊相关系数分析冷热电负荷及气象因素存在的强相... 精确的多元负荷预测是实现综合能源系统优化调度与经济运行的关键技术。在考虑多元负荷相关性的基础上,提出一种基于MMoE多任务学习和长短时记忆网络(LSTM)的多元负荷预测方法。利用皮尔逊相关系数分析冷热电负荷及气象因素存在的强相关性和弱相关性;构建MMoE多任务学习模型,利用专家子网和门控单元学习多元负荷间耦合特性的差异;使用LSTM构建子任务模型,对多元负荷进行预测。利用公开数据集进行性能验证,结果表明所提基于MMoE多任务学习和LSTM的模型能够有效提升多元负荷预测精度。 展开更多
关键词 多元负荷预测 综合能源系统 相关性分析 mmoe多任务学习 长短时记忆网络 专家网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部