期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ML loss的SVM分类算法 被引量:9
1
作者 徐龙飞 郁进明 《计算机应用研究》 CSCD 北大核心 2021年第2期435-439,共5页
SVM的损失函数可以保证分类结果的高置信度,但同时是一个无界的凸函数,导致受噪声的影响较大。为了提高SVM在噪声环境下的分类效果,提出使用结合了pinball和LS损失函数的ML loss来降低对噪声的敏感性,将其应用到SVM中得到MLSVM模型。根... SVM的损失函数可以保证分类结果的高置信度,但同时是一个无界的凸函数,导致受噪声的影响较大。为了提高SVM在噪声环境下的分类效果,提出使用结合了pinball和LS损失函数的ML loss来降低对噪声的敏感性,将其应用到SVM中得到MLSVM模型。根据LS损失函数具有结构风险最小化的特性和等式约束来简化求解过程,然后使用pinball损失函数根据分类样本之间的最大分位数距离来确定分类超平面,再使用拉格朗日函数等方法求解MLSVM的目标函数和分类超平面。在数据集上的实验表明,相比于hinge SVM等模型,MLSVM可以降低对数据中噪声的敏感性,提升对含噪数据的分类性能。 展开更多
关键词 支持向量机(SVM) 损失函数 噪声 pinball LS ML loss mlsvm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部