The miniature design technology is an important trend in space exploration.Mass spectrometer is used extensively in the space environment detection.The miniature ion mass spectrometer utilizes a 127° cylindrical ...The miniature design technology is an important trend in space exploration.Mass spectrometer is used extensively in the space environment detection.The miniature ion mass spectrometer utilizes a 127° cylindrical electrostatic analyzer accompanied with a Time of Flight(TOF)unit based on ultrathin carbon foil to measure the energy spectra and composition of space plasma.The Time of Flight technique has been used broadly in space plasma measurement.A new type of miniature method for the ion mass spectrometer is introduced.The total mass of the instrument is1.8 kg and the total power consumption is 2.0 W.The calibration results show that the energy measurement range is 8.71~43550eV,the energy resolution is 1.86%and the ion mass from 1 amu(1 amu= 1.67 × 10^(-27)kg) to 58 amu can be resolved by the miniature mass spectrometer.The miniature ion mass spectrometer also has a potential to be increased in the field of view by an electrostatic deflecting system to extend its application in space plasma detection.The miniature ion mass spectrometer has been selected for pre-study of Chinese Strategic Priority Research Program on Space Science.展开更多
Considering two characteristics of compact heat dissipation room and high heat flux, a novel miniature capillary pumped loop (MCPL) for electronics cooling was proposed. MCPL consists of evaporator, condenser, vapor a...Considering two characteristics of compact heat dissipation room and high heat flux, a novel miniature capillary pumped loop (MCPL) for electronics cooling was proposed. MCPL consists of evaporator, condenser, vapor and liquid line dissipates heat by boiling and condensation of working fluids with no extra power consumption. Working fluid circulation is ensured by vapor pressure and capillary head. Saturated wick screens vapor and liquid, and ensures one-way flow of working fluid with no extra valve. In order to promote heat dissipation capacity of MCPL, the intensified boiling and condensation structures are embedded into evaporator and condenser respectively, which are useful to increasing boiling and condensation efficiency. Startup and run characteristics are tested by experiments in the condition of different power inputs and working fluids. MCPL is capable of dissipating 80 W of thermal energy and keeping the bottom substrate temperature of evaporator at 80 ℃.展开更多
Miniature flares containing magnesium/sodium nitrate compounded with different binders were studied for increasing luminosity and luminous efficiency in various fuel oxidizer ratio and flare diameters.Unsaturated poly...Miniature flares containing magnesium/sodium nitrate compounded with different binders were studied for increasing luminosity and luminous efficiency in various fuel oxidizer ratio and flare diameters.Unsaturated polyester, Bisphenol-A epoxy resin, calcium resinate, and nitrocellulose were used as binders for construction the flares. Experimental results showed that luminous efficiency was higher for polyester based flares. Due to the difference in decomposition progress of various binders and the exothermic reaction between binder and oxidizer the luminous efficiency of the mixtures were 31000,28900, 27800 and 25100 cd respectively for polyester, epoxy, calcium resinate, and nitrocellulose. It was found that nitrocellulose as an energetic binder produces the highest light intensity in comparison to other binders, but the burning rate is higher and the burning time is lower than the other binders.Thermal analysis of four binders showed that the heat of reactions was directly related to the amount of light output and luminosity.展开更多
A novel substrate integrated microstrip to ultra-thin cavity filter transition operating in the W-band is proposed in this letter.The structure is a new method of connecting microstrip circuits and waveguide filters,a...A novel substrate integrated microstrip to ultra-thin cavity filter transition operating in the W-band is proposed in this letter.The structure is a new method of connecting microstrip circuits and waveguide filters,and this new structure enables a planar integrated transition from microstrip lines to ultra-thin cavity filters,thereby reducing the size of the transition structure and achieving miniaturization.The structure includes a conventional tapered microstrip transition structure,which guides the electromagnetic field from the microstrip line to the reduced-height dielectric-filled waveguide,and an air-filled matching cavity which is placed between the dielectric-filled waveguide and the ultra-thin cavity filter.The heights of the microstrip line,the dielectric-filled waveguide and the ultra-thin cavity filter are the same,enabling seamless integration within a planar radio-frequency(RF)circuit.To facilitate testing,mature finline transition structures are integrated at both ends of the microstrip line during fabrications.The simulation results of the fabricated microstrip to ultra-thin cavity filter transition with the finline transition structure,with a passband of 91.5-96.5 GHz,has an insertion loss of less than 1.9 dB and a return loss lower than-20 dB.And the whole structure has also been measured which achieves an insertion loss less than 2.6 dB and a return loss lower than-15 dB within the filter's passband,including the additional insertion loss introduced by the finline transitions.Finally,a W-band compact up-conversion module is designed,and the test results show that after using the proposed structure,the module achieves 95 dBc suppression of the 84 GHz local oscillator.It is also demonstrated that the structure proposed in this letter achieves miniaturization of the system integration without compromising the filter performance.展开更多
In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, t...In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, the fabrication process of miniaturized phase change heat sink is investigated, upon which all parts of the heat sink are fabricated including main-body and end-cover of the heat sink, the formation of three-dimensional boiling structures at the evaporation end, the sintering of the wick, and the encapsulation of high power LED phase change heat sink. Subsequently, with the assistance of the developed testing system, heat transfer performance of the heat sink is tested under the condition of natural convection, upon which the influence of thermal load and working medium on the heat transfer performance is investigated. Finally, the heat transfer performance of the developed miniaturized phase change heat sink is compared with that of metal solid heat sink. Results show that the developed miniaturized phase change heat sink presents much better heat transfer performance over traditional metal solid heat sink, and is suitable for the packaging of high power LED.展开更多
The features of information technology (IT) are discussed first. On this basis, the features of space information technology (SIT) are presented and SIT is elaborated in five categories. The popularization of SIT ...The features of information technology (IT) are discussed first. On this basis, the features of space information technology (SIT) are presented and SIT is elaborated in five categories. The popularization of SIT is an informatization process and will promote the industrialization of national economy and the modernization of industry such as agriculture. The necessity of the synthetical application of SIT is studied emphatically, and the development trend of SIT is discussed.展开更多
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m...Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.展开更多
The design and optimization of a self-complementary two-arm Archimedean spiral antenna backed by an absorptive cavity were presented. Parametric studies on the proposed antenna structure were carried out by using CST ...The design and optimization of a self-complementary two-arm Archimedean spiral antenna backed by an absorptive cavity were presented. Parametric studies on the proposed antenna structure were carried out by using CST MWS. Simulation results show that the proper choice of spiral turns and cavity depth can miniaturize the dimensions of the cavity-backed spiral antenna presented here. According to simulation results, prototype antennas operating in the 6 12 GHz band are fabricated and the dimension of the proposed cavity-backed spiral antenna is 22 mm (diameter)×15 mm (height). The performance of the proposed antenna was measured and compared with the simulation results. It is shown that the experimental results are consistent with the theoretical predictions and the suggested antenna is good enough to adapt for various wideband applications.展开更多
基金Supported by the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(XDA04071700,XDA04060202)
文摘The miniature design technology is an important trend in space exploration.Mass spectrometer is used extensively in the space environment detection.The miniature ion mass spectrometer utilizes a 127° cylindrical electrostatic analyzer accompanied with a Time of Flight(TOF)unit based on ultrathin carbon foil to measure the energy spectra and composition of space plasma.The Time of Flight technique has been used broadly in space plasma measurement.A new type of miniature method for the ion mass spectrometer is introduced.The total mass of the instrument is1.8 kg and the total power consumption is 2.0 W.The calibration results show that the energy measurement range is 8.71~43550eV,the energy resolution is 1.86%and the ion mass from 1 amu(1 amu= 1.67 × 10^(-27)kg) to 58 amu can be resolved by the miniature mass spectrometer.The miniature ion mass spectrometer also has a potential to be increased in the field of view by an electrostatic deflecting system to extend its application in space plasma detection.The miniature ion mass spectrometer has been selected for pre-study of Chinese Strategic Priority Research Program on Space Science.
基金Project(50605023) supported by the National Natural Science Foundation of China
文摘Considering two characteristics of compact heat dissipation room and high heat flux, a novel miniature capillary pumped loop (MCPL) for electronics cooling was proposed. MCPL consists of evaporator, condenser, vapor and liquid line dissipates heat by boiling and condensation of working fluids with no extra power consumption. Working fluid circulation is ensured by vapor pressure and capillary head. Saturated wick screens vapor and liquid, and ensures one-way flow of working fluid with no extra valve. In order to promote heat dissipation capacity of MCPL, the intensified boiling and condensation structures are embedded into evaporator and condenser respectively, which are useful to increasing boiling and condensation efficiency. Startup and run characteristics are tested by experiments in the condition of different power inputs and working fluids. MCPL is capable of dissipating 80 W of thermal energy and keeping the bottom substrate temperature of evaporator at 80 ℃.
文摘Miniature flares containing magnesium/sodium nitrate compounded with different binders were studied for increasing luminosity and luminous efficiency in various fuel oxidizer ratio and flare diameters.Unsaturated polyester, Bisphenol-A epoxy resin, calcium resinate, and nitrocellulose were used as binders for construction the flares. Experimental results showed that luminous efficiency was higher for polyester based flares. Due to the difference in decomposition progress of various binders and the exothermic reaction between binder and oxidizer the luminous efficiency of the mixtures were 31000,28900, 27800 and 25100 cd respectively for polyester, epoxy, calcium resinate, and nitrocellulose. It was found that nitrocellulose as an energetic binder produces the highest light intensity in comparison to other binders, but the burning rate is higher and the burning time is lower than the other binders.Thermal analysis of four binders showed that the heat of reactions was directly related to the amount of light output and luminosity.
基金Supported by the Fundamental Research Funds for the Central Universities(ZYGX2021J008)。
文摘A novel substrate integrated microstrip to ultra-thin cavity filter transition operating in the W-band is proposed in this letter.The structure is a new method of connecting microstrip circuits and waveguide filters,and this new structure enables a planar integrated transition from microstrip lines to ultra-thin cavity filters,thereby reducing the size of the transition structure and achieving miniaturization.The structure includes a conventional tapered microstrip transition structure,which guides the electromagnetic field from the microstrip line to the reduced-height dielectric-filled waveguide,and an air-filled matching cavity which is placed between the dielectric-filled waveguide and the ultra-thin cavity filter.The heights of the microstrip line,the dielectric-filled waveguide and the ultra-thin cavity filter are the same,enabling seamless integration within a planar radio-frequency(RF)circuit.To facilitate testing,mature finline transition structures are integrated at both ends of the microstrip line during fabrications.The simulation results of the fabricated microstrip to ultra-thin cavity filter transition with the finline transition structure,with a passband of 91.5-96.5 GHz,has an insertion loss of less than 1.9 dB and a return loss lower than-20 dB.And the whole structure has also been measured which achieves an insertion loss less than 2.6 dB and a return loss lower than-15 dB within the filter's passband,including the additional insertion loss introduced by the finline transitions.Finally,a W-band compact up-conversion module is designed,and the test results show that after using the proposed structure,the module achieves 95 dBc suppression of the 84 GHz local oscillator.It is also demonstrated that the structure proposed in this letter achieves miniaturization of the system integration without compromising the filter performance.
基金Projects(51575115,51775122)supported by the National Natural Science Foundation of China
文摘In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, the fabrication process of miniaturized phase change heat sink is investigated, upon which all parts of the heat sink are fabricated including main-body and end-cover of the heat sink, the formation of three-dimensional boiling structures at the evaporation end, the sintering of the wick, and the encapsulation of high power LED phase change heat sink. Subsequently, with the assistance of the developed testing system, heat transfer performance of the heat sink is tested under the condition of natural convection, upon which the influence of thermal load and working medium on the heat transfer performance is investigated. Finally, the heat transfer performance of the developed miniaturized phase change heat sink is compared with that of metal solid heat sink. Results show that the developed miniaturized phase change heat sink presents much better heat transfer performance over traditional metal solid heat sink, and is suitable for the packaging of high power LED.
文摘The features of information technology (IT) are discussed first. On this basis, the features of space information technology (SIT) are presented and SIT is elaborated in five categories. The popularization of SIT is an informatization process and will promote the industrialization of national economy and the modernization of industry such as agriculture. The necessity of the synthetical application of SIT is studied emphatically, and the development trend of SIT is discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.22275092,52102107 and 52372084)the Fundamental Research Funds for the Central Universities(Grant No.30923010920)。
文摘Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.
文摘The design and optimization of a self-complementary two-arm Archimedean spiral antenna backed by an absorptive cavity were presented. Parametric studies on the proposed antenna structure were carried out by using CST MWS. Simulation results show that the proper choice of spiral turns and cavity depth can miniaturize the dimensions of the cavity-backed spiral antenna presented here. According to simulation results, prototype antennas operating in the 6 12 GHz band are fabricated and the dimension of the proposed cavity-backed spiral antenna is 22 mm (diameter)×15 mm (height). The performance of the proposed antenna was measured and compared with the simulation results. It is shown that the experimental results are consistent with the theoretical predictions and the suggested antenna is good enough to adapt for various wideband applications.