In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of...In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of DAAF from synthesis to spherical coating was designed and established in this paper, which combined ultrasonic micromixing reaction with microdroplet globular template. In the rapid micromixing stage, the microfluidic mixing technology with ultrasonic was used to synergistically strengthen the uniform and rapid mass transfer mixing reaction between raw materials to ensure the uniformity of DAAF particle nucleation-growth, and to prepare high-quality DAAF crystals with uniform structure and morphology and concentrated particle size distribution. In the microdroplet globular template stage, the microfluidic droplet technology was used to form a droplet globular template with uniform size under the shear action of the continuous phase of the dispersed phase solution containing DAAF particles and binder. The size of the droplet template was controlled by adjusting the flow rate ratio between the continuous phase and the dispersed phase. In the droplet globular template, with the diffusion of the solvent in the dispersed phase droplets, the binder precipitates to coat the DAAF into a ball, forming a DAAF microsphere with high sphericity, narrow particle size distribution and good monodispersity. The problem of discontinuity and DAAF particle suspension in the process was solved, and the coating theory under this process was studied. DAAF was coated with different binder formulations of fluororubber(F2604), nitrocellulose(NC) and NC/glycidyl azide polymer(GAP), and the process verification and evaluation of the system were carried out. The balling effects of large, medium and small droplet templates under different binder formulations were studied. The scanning electron microscope(SEM) results show that the three droplet templates under the three binder formulations exhibit good balling effect and narrow particle size distribution. The DAAF microspheres were characterized by powder X-ray diffraction(XRD), differential scanning calorimetry(DSC), thermo-gravimetric(TG) and sensitivity analyzer. The results showed that the crystal structure of DAAF did not change during the process, and the prepared DAAF microspheres had lower decomposition temperature and lower mechanical sensitivity than raw DAAF. The results of detonation parameters show that the coating of DAAF by using the above three binder formulations will not greatly reduce the energy output of DAAF, and has comparable detonation performance to raw DAAF. This study proves an efficient and safe continuous system from synthesis to spherical coating modification of explosives, which provides a new way for the continuous, safe and efficient preparation of spherical explosives.展开更多
Phosphor yttrium aluminum garnet Y3A15O12 (YAG), activated with trivalent cerium (Ce^3+), was synthesized by T-tube impinging streams, T-type vortex impinging streams co-precipitation method (IS-CP) and direct ...Phosphor yttrium aluminum garnet Y3A15O12 (YAG), activated with trivalent cerium (Ce^3+), was synthesized by T-tube impinging streams, T-type vortex impinging streams co-precipitation method (IS-CP) and direct co-precipitation method (D-CP), respectively. The crystallization, morphologies, particle size and particle size distribution of the phosphors obtained under different experimental conditions were studied. The influence of various factors on the luminescence intensity of the phosphor was also investigated, such as feeding methods, volume flow rate, contents of Ce and initial reactant concentration. The results show that the precursors synthesized by T-tube impinging streams co-precipitation reaction transform to Y3A15O12 (YAG) phosphor at about 1 000 ℃. The particles are far smaller and narrower than those prepared by D-CP. In the impinging streams co-precipitation system, the luminescent intensity of YAG:Ce phosphor increases with the increase of liquid flow rate. The intensity firstly increases then decreases with the increasing Ce^3+ doping content, and the maximum intensity is shown at 1.67% (molar fraction) Ce. Luminescent intensity gradually decreases with the increase of initial concentration of reactants. At the same operational condition, the luminescent intensity of the phosphors prepared by T-tube impinging streams reactor is higher than that by D-CP, and the luminescent intensity of the phosphors prepared by T-type vortex impinging streams is higher than that by T-tube impinging streams reactor.展开更多
A CFD simulation was carried out to investigate the mixing process in a Y-shape micromixer with the software Fluent 6.3. The definition of the "diffusion angle" is proposed to describe the molecular diffusio...A CFD simulation was carried out to investigate the mixing process in a Y-shape micromixer with the software Fluent 6.3. The definition of the "diffusion angle" is proposed to describe the molecular diffusion process associated with the flow at low Reynolds number. The linear relationship between the diffusion angle and the Peclet number(Pe) is determined by both theoretical analysis and numerical simulation. Moreover, the simulation results reveal that the diffusion angle is only related to the Peclet number whilst it is irrelevant to the changes of Re(Reynolds number) and Sc(Schmidt number). The range of Peclet number and Reynolds number for experimental measurement are also suggested as Pe≤10000 and Re≤10.展开更多
基金National Natural Science Foundation of China(Grant No.22005275)to provide fund for conducting experiments.
文摘In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of DAAF from synthesis to spherical coating was designed and established in this paper, which combined ultrasonic micromixing reaction with microdroplet globular template. In the rapid micromixing stage, the microfluidic mixing technology with ultrasonic was used to synergistically strengthen the uniform and rapid mass transfer mixing reaction between raw materials to ensure the uniformity of DAAF particle nucleation-growth, and to prepare high-quality DAAF crystals with uniform structure and morphology and concentrated particle size distribution. In the microdroplet globular template stage, the microfluidic droplet technology was used to form a droplet globular template with uniform size under the shear action of the continuous phase of the dispersed phase solution containing DAAF particles and binder. The size of the droplet template was controlled by adjusting the flow rate ratio between the continuous phase and the dispersed phase. In the droplet globular template, with the diffusion of the solvent in the dispersed phase droplets, the binder precipitates to coat the DAAF into a ball, forming a DAAF microsphere with high sphericity, narrow particle size distribution and good monodispersity. The problem of discontinuity and DAAF particle suspension in the process was solved, and the coating theory under this process was studied. DAAF was coated with different binder formulations of fluororubber(F2604), nitrocellulose(NC) and NC/glycidyl azide polymer(GAP), and the process verification and evaluation of the system were carried out. The balling effects of large, medium and small droplet templates under different binder formulations were studied. The scanning electron microscope(SEM) results show that the three droplet templates under the three binder formulations exhibit good balling effect and narrow particle size distribution. The DAAF microspheres were characterized by powder X-ray diffraction(XRD), differential scanning calorimetry(DSC), thermo-gravimetric(TG) and sensitivity analyzer. The results showed that the crystal structure of DAAF did not change during the process, and the prepared DAAF microspheres had lower decomposition temperature and lower mechanical sensitivity than raw DAAF. The results of detonation parameters show that the coating of DAAF by using the above three binder formulations will not greatly reduce the energy output of DAAF, and has comparable detonation performance to raw DAAF. This study proves an efficient and safe continuous system from synthesis to spherical coating modification of explosives, which provides a new way for the continuous, safe and efficient preparation of spherical explosives.
基金Project(200805330032)supported by the Natural Educative Doctoral Foundation of ChinaProjects(20080440987,200902475)supported by the China Postdoctoral Science Foundation
文摘Phosphor yttrium aluminum garnet Y3A15O12 (YAG), activated with trivalent cerium (Ce^3+), was synthesized by T-tube impinging streams, T-type vortex impinging streams co-precipitation method (IS-CP) and direct co-precipitation method (D-CP), respectively. The crystallization, morphologies, particle size and particle size distribution of the phosphors obtained under different experimental conditions were studied. The influence of various factors on the luminescence intensity of the phosphor was also investigated, such as feeding methods, volume flow rate, contents of Ce and initial reactant concentration. The results show that the precursors synthesized by T-tube impinging streams co-precipitation reaction transform to Y3A15O12 (YAG) phosphor at about 1 000 ℃. The particles are far smaller and narrower than those prepared by D-CP. In the impinging streams co-precipitation system, the luminescent intensity of YAG:Ce phosphor increases with the increase of liquid flow rate. The intensity firstly increases then decreases with the increasing Ce^3+ doping content, and the maximum intensity is shown at 1.67% (molar fraction) Ce. Luminescent intensity gradually decreases with the increase of initial concentration of reactants. At the same operational condition, the luminescent intensity of the phosphors prepared by T-tube impinging streams reactor is higher than that by D-CP, and the luminescent intensity of the phosphors prepared by T-type vortex impinging streams is higher than that by T-tube impinging streams reactor.
基金Project(51106184)supported by the National Natural Science Foundation of China
文摘A CFD simulation was carried out to investigate the mixing process in a Y-shape micromixer with the software Fluent 6.3. The definition of the "diffusion angle" is proposed to describe the molecular diffusion process associated with the flow at low Reynolds number. The linear relationship between the diffusion angle and the Peclet number(Pe) is determined by both theoretical analysis and numerical simulation. Moreover, the simulation results reveal that the diffusion angle is only related to the Peclet number whilst it is irrelevant to the changes of Re(Reynolds number) and Sc(Schmidt number). The range of Peclet number and Reynolds number for experimental measurement are also suggested as Pe≤10000 and Re≤10.