Objective Most patients with knee osteoarthritis(OA)have alignment deformity with the change of Hip-knee-ankle(HKA)angle.The knee alignment influences load distribution at the tibial plateau.Meanwhile,change of subcho...Objective Most patients with knee osteoarthritis(OA)have alignment deformity with the change of Hip-knee-ankle(HKA)angle.The knee alignment influences load distribution at the tibial plateau.Meanwhile,change of subchondral trabecular bone microstructure is related to load bearing and OA progression.However,the relationship between knee alignment on the changes of subchondral trabecular bone microstructure and OA severity have been poorly investigated.The main goal of this work was to investigate variation in tibial plateaus subchondral trabecular bone microstructure in knee OA patients and their association with the severity of OA with the change of knee alignment.Methods Seventy-one knee OA patients planning to undergo total knee arthroplasty were enrolled in this study.The HKA angle and OA disease severity(OARSI score,compartment-specific Kellgren-Lawrence(K-L)grade and OARSI Atlas grade)based on full-leg standing posteroanterior radiographs were evaluated preoperatively in all patients.The tibial plateau collected during surgery was first used for micro-computed tomography(μCT)to analyze the subchondral trabecular bone microstructures,and then used for pathological sections to analyze cartilage degeneration(OARSI score).Pearson and spearman correlations were used to examine linear relationships between knee alignment,OA disease severity and subchondral trabecular bone microstructure.Patients were then divided into group I(HKA angle exceeds 0°in the valgus direction),group II(varus angle<10°)and group III(varus angle≥10°).The differences in subchondral trabecular bone microstructural parameters between the three groups were analyzed by the one-way ANOVA with a post hoc Tukey test.Results HKA angle was significantly correlated with all tibial plateau subchondral trabecular bone microstructure parameters.Regardless of the medial or lateral tibia,HKA angle was most strongly correlated with bone volume fraction(BV/TV),M:(r=0. 613,P<0.01);L:(r=-0.490,P<0.01).In addition,for the media-to-lateral ratios(M:L)of the subchondral trabecular bone microstructure parameters,the HKA angle is positively correlated with M:L BV/TV(r=0.658,P<0.01),M:L trabecular number(Tb.N)(r=0.525,,P<0.01),M:L trabecular thickness(Tb.Th)(r=0.636,P<0.01),and negatively correlated with M:L trabecular separation(Tb.Sp)(r=-0.636,P<0.01)and M:L Specific Bone Surface(BS/BV)(r=-0.792,P<0.01).The BV/TV,Tb.N,and Tb.Th of the medial tibia were sequentially incremented in the order of groupⅠ,Ⅱ,Ⅲof knee alignment,while the Tb.Sp and BS/BV were decreased in this order.The lateral tibia is the opposite.In addition,most of the severity indices of OA are associated with subchondral trabecular bone microstructures,of which OARSI score and BV/TV in medial tibia are the most relevant(r=0.787,P<0.01).HKA angle is significantly correlated with all OA severity grades in medial compartment,but only with OARSI score and Bone sclerosis grade in lateral compartment.Conclusions Tibial plateau subchondral trabecular bone microarchitecture is associated with the HKA angle and OA severity.With the increase of varus angle and the severity of OA,the subchondral trabecular bone in medial tibia has more obvious sclerosis changes and vice versa,suggesting that knee malalignment may promote abnormal subchondral trabecular bone remodeling by altering joint load distribution,thereby affecting the progression of OA.展开更多
A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity...A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity of contemporary high-performance spacecraft processors.To harness these non-uniform access behaviors,an efficient cache replacement framework featuring an auxiliary cache specifically designed to retain evicted hot data was proposed.This framework reconstructs the cache replacement policy,facilitating data migration between the main cache and the auxiliary cache.Unlike traditional cacheline-granularity policies,the approach excels at identifying and evicting infrequently used data,thereby optimizing cache utilization.The evaluation shows impressive performance improvement,especially on workloads with irregular access patterns.Benefiting from fine granularity,the proposal achieves superior storage efficiency compared with commonly used cache management schemes,providing a potential optimization opportunity for modern resource-constrained processors,such as spacecraft processors.Furthermore,the framework complements existing modern cache replacement policies and can be seamlessly integrated with minimal modifications,enhancing their overall efficacy.展开更多
基金supported by grants from the National Natural Science Foundation of China ( 11572197, 11872251)Shanghai Clinical Medical Center ( 2017ZZ01023)+1 种基金Shanghai Municipal Key Clinical Specialty,Shanghai Ninth People’s Hospital,Shanghai Jiao Tong University School of Medicine ( JYLJ201821,CK2018011)Shanghai Jiao Tong University School of Medicine ( TM201814)
文摘Objective Most patients with knee osteoarthritis(OA)have alignment deformity with the change of Hip-knee-ankle(HKA)angle.The knee alignment influences load distribution at the tibial plateau.Meanwhile,change of subchondral trabecular bone microstructure is related to load bearing and OA progression.However,the relationship between knee alignment on the changes of subchondral trabecular bone microstructure and OA severity have been poorly investigated.The main goal of this work was to investigate variation in tibial plateaus subchondral trabecular bone microstructure in knee OA patients and their association with the severity of OA with the change of knee alignment.Methods Seventy-one knee OA patients planning to undergo total knee arthroplasty were enrolled in this study.The HKA angle and OA disease severity(OARSI score,compartment-specific Kellgren-Lawrence(K-L)grade and OARSI Atlas grade)based on full-leg standing posteroanterior radiographs were evaluated preoperatively in all patients.The tibial plateau collected during surgery was first used for micro-computed tomography(μCT)to analyze the subchondral trabecular bone microstructures,and then used for pathological sections to analyze cartilage degeneration(OARSI score).Pearson and spearman correlations were used to examine linear relationships between knee alignment,OA disease severity and subchondral trabecular bone microstructure.Patients were then divided into group I(HKA angle exceeds 0°in the valgus direction),group II(varus angle<10°)and group III(varus angle≥10°).The differences in subchondral trabecular bone microstructural parameters between the three groups were analyzed by the one-way ANOVA with a post hoc Tukey test.Results HKA angle was significantly correlated with all tibial plateau subchondral trabecular bone microstructure parameters.Regardless of the medial or lateral tibia,HKA angle was most strongly correlated with bone volume fraction(BV/TV),M:(r=0. 613,P<0.01);L:(r=-0.490,P<0.01).In addition,for the media-to-lateral ratios(M:L)of the subchondral trabecular bone microstructure parameters,the HKA angle is positively correlated with M:L BV/TV(r=0.658,P<0.01),M:L trabecular number(Tb.N)(r=0.525,,P<0.01),M:L trabecular thickness(Tb.Th)(r=0.636,P<0.01),and negatively correlated with M:L trabecular separation(Tb.Sp)(r=-0.636,P<0.01)and M:L Specific Bone Surface(BS/BV)(r=-0.792,P<0.01).The BV/TV,Tb.N,and Tb.Th of the medial tibia were sequentially incremented in the order of groupⅠ,Ⅱ,Ⅲof knee alignment,while the Tb.Sp and BS/BV were decreased in this order.The lateral tibia is the opposite.In addition,most of the severity indices of OA are associated with subchondral trabecular bone microstructures,of which OARSI score and BV/TV in medial tibia are the most relevant(r=0.787,P<0.01).HKA angle is significantly correlated with all OA severity grades in medial compartment,but only with OARSI score and Bone sclerosis grade in lateral compartment.Conclusions Tibial plateau subchondral trabecular bone microarchitecture is associated with the HKA angle and OA severity.With the increase of varus angle and the severity of OA,the subchondral trabecular bone in medial tibia has more obvious sclerosis changes and vice versa,suggesting that knee malalignment may promote abnormal subchondral trabecular bone remodeling by altering joint load distribution,thereby affecting the progression of OA.
文摘A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity of contemporary high-performance spacecraft processors.To harness these non-uniform access behaviors,an efficient cache replacement framework featuring an auxiliary cache specifically designed to retain evicted hot data was proposed.This framework reconstructs the cache replacement policy,facilitating data migration between the main cache and the auxiliary cache.Unlike traditional cacheline-granularity policies,the approach excels at identifying and evicting infrequently used data,thereby optimizing cache utilization.The evaluation shows impressive performance improvement,especially on workloads with irregular access patterns.Benefiting from fine granularity,the proposal achieves superior storage efficiency compared with commonly used cache management schemes,providing a potential optimization opportunity for modern resource-constrained processors,such as spacecraft processors.Furthermore,the framework complements existing modern cache replacement policies and can be seamlessly integrated with minimal modifications,enhancing their overall efficacy.