期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
双路Transformer在轴承故障诊断中的应用 被引量:1
1
作者 邰志艳 侯婷悦 +2 位作者 刘铭 于子奇 冯子懿 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期179-184,共6页
针对传统算法在轴承故障诊断任务中无法充分利用信号特征,提出双路Transformer方法对轴承故障进行诊断分类。Transformer的自注意力机制可以深度提取长序列频谱数据中全局时域关联信息,双路Transformer在2条路径上采用不同大小的卷积核... 针对传统算法在轴承故障诊断任务中无法充分利用信号特征,提出双路Transformer方法对轴承故障进行诊断分类。Transformer的自注意力机制可以深度提取长序列频谱数据中全局时域关联信息,双路Transformer在2条路径上采用不同大小的卷积核和不同特性的注意力机制,提取信号的高低频特征。双路Transformer可从信号序列的多重频谱中有效识别表征轴承故障的高低频特征,增加特征信息丰富度。此外,设计多尺度特征融合模块,对双路Transformer提取的包含全局关联信息的高低频特征进行融合,得到深度故障特征,实现对不同类型故障的高效诊断。以美国机械故障预防技术学会的轴承数据集进行验证,结果表明双路Transformer在一定收敛速度下准确率达97.44%,比传统诊断算法具有更高的准确率和鲁棒性。 展开更多
关键词 轴承故障诊断 双路Transformer 多尺度特征融合 mfpt数据集 自注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部