Aim p53 up-regulated modulator of apoptosis (PUMA) is a known apoptosis inducer; however its role in microglial survival remains poorly understood. In addition to the classical transcription factor p53, microRNA- ...Aim p53 up-regulated modulator of apoptosis (PUMA) is a known apoptosis inducer; however its role in microglial survival remains poorly understood. In addition to the classical transcription factor p53, microRNA- 143 (miR-143) is involved in PUMA expression at the post-transcriptional level. Furthermore, they identify unique roles of miR-143/PUMA in mediating microglial survival via the regulation of apoptosis and autophagy interplay. Results Blockage of autophagy accelerated methamphetamine-induced apoptosis, whereas the induction of autoph- agy attenuated the decrease in microglial survival. Moreover, anti-miR-143-dependent PUMA up-regulation re- versed the methamphetamine-induced decrease in microglial survival via the regulation of apoptosis and autophagy. The in vivo relevance of these findings was confirmed in mouse models, which demonstrated that the microinjection of anti-miR-143 into the hippocampus ameliorated the methamphetamine-induced decrease in microglia as well as that observed in heterozygous miR-143 ^+/- mice. Conclusion These findings provided new insight for the specific contributions of miR-143/PUMA to microglial survival in the context of drug abuse.展开更多
文摘Aim p53 up-regulated modulator of apoptosis (PUMA) is a known apoptosis inducer; however its role in microglial survival remains poorly understood. In addition to the classical transcription factor p53, microRNA- 143 (miR-143) is involved in PUMA expression at the post-transcriptional level. Furthermore, they identify unique roles of miR-143/PUMA in mediating microglial survival via the regulation of apoptosis and autophagy interplay. Results Blockage of autophagy accelerated methamphetamine-induced apoptosis, whereas the induction of autoph- agy attenuated the decrease in microglial survival. Moreover, anti-miR-143-dependent PUMA up-regulation re- versed the methamphetamine-induced decrease in microglial survival via the regulation of apoptosis and autophagy. The in vivo relevance of these findings was confirmed in mouse models, which demonstrated that the microinjection of anti-miR-143 into the hippocampus ameliorated the methamphetamine-induced decrease in microglia as well as that observed in heterozygous miR-143 ^+/- mice. Conclusion These findings provided new insight for the specific contributions of miR-143/PUMA to microglial survival in the context of drug abuse.