Multi-manned assembly line,which is broadly utilized to assemble high volume products such as automobiles and trucks,allows a group of workers to assemble different tasks simultaneously in a multi-manned workstation.T...Multi-manned assembly line,which is broadly utilized to assemble high volume products such as automobiles and trucks,allows a group of workers to assemble different tasks simultaneously in a multi-manned workstation.This additional characteristic of parallel operators increases the complexity of the traditional NP-hard assembly line balancing problem.Hence,this paper formulates the Type-I multi-manned assembly line balancing problem to minimize the total number of workstations and operators,and develops an efficient migrating birds optimization algorithm embedded into an idle time reduction method.In this algorithm,a new decoding mechanism is proposed which reduces the sequence-dependent idle time by some task assignment rules;three effective neighborhoods are developed to make refinement of existing solutions in the bird improvement phases;and temperature acceptance and competitive mechanism are employed to avoid being trapped in the local optimum.Comparison experiments suggest that the new decoding and improvements are effective and the proposed algorithm outperforms the compared algorithms.展开更多
A new meta-heuristic method is proposed to enhance current meta-heuristic methods for global optimization and test scheduling for three-dimensional (3D) stacked system-on-chip (SoC) by hybridizing grey wolf optimi...A new meta-heuristic method is proposed to enhance current meta-heuristic methods for global optimization and test scheduling for three-dimensional (3D) stacked system-on-chip (SoC) by hybridizing grey wolf optimization with differential evo- lution (HGWO). Because basic grey wolf optimization (GWO) is easy to fall into stagnation when it carries out the operation of at- tacking prey, and differential evolution (DE) is integrated into GWO to update the previous best position of grey wolf Alpha, Beta and Delta, in order to force GWO to jump out of the stagnation with DE's strong searching ability. The proposed algorithm can accele- rate the convergence speed of GWO and improve its performance. Twenty-three well-known benchmark functions and an NP hard problem of test scheduling for 3D SoC are employed to verify the performance of the proposed algorithm. Experimental results show the superior performance of the proposed algorithm for exploiting the optimum and it has advantages in terms of exploration.展开更多
基金supported by the National Natural Science Foundation of China(51875421,61803287).
文摘Multi-manned assembly line,which is broadly utilized to assemble high volume products such as automobiles and trucks,allows a group of workers to assemble different tasks simultaneously in a multi-manned workstation.This additional characteristic of parallel operators increases the complexity of the traditional NP-hard assembly line balancing problem.Hence,this paper formulates the Type-I multi-manned assembly line balancing problem to minimize the total number of workstations and operators,and develops an efficient migrating birds optimization algorithm embedded into an idle time reduction method.In this algorithm,a new decoding mechanism is proposed which reduces the sequence-dependent idle time by some task assignment rules;three effective neighborhoods are developed to make refinement of existing solutions in the bird improvement phases;and temperature acceptance and competitive mechanism are employed to avoid being trapped in the local optimum.Comparison experiments suggest that the new decoding and improvements are effective and the proposed algorithm outperforms the compared algorithms.
基金supported by the National Natural Science Foundation of China(6076600161105004)+1 种基金the Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ14110)the Program for Innovative Research Team of Guilin University of Electronic Technology(IRTGUET)
文摘A new meta-heuristic method is proposed to enhance current meta-heuristic methods for global optimization and test scheduling for three-dimensional (3D) stacked system-on-chip (SoC) by hybridizing grey wolf optimization with differential evo- lution (HGWO). Because basic grey wolf optimization (GWO) is easy to fall into stagnation when it carries out the operation of at- tacking prey, and differential evolution (DE) is integrated into GWO to update the previous best position of grey wolf Alpha, Beta and Delta, in order to force GWO to jump out of the stagnation with DE's strong searching ability. The proposed algorithm can accele- rate the convergence speed of GWO and improve its performance. Twenty-three well-known benchmark functions and an NP hard problem of test scheduling for 3D SoC are employed to verify the performance of the proposed algorithm. Experimental results show the superior performance of the proposed algorithm for exploiting the optimum and it has advantages in terms of exploration.