期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
细胞力学传感器介导癌痛的研究进展
1
作者 刘畅 李海艳 杭黎华 《医用生物力学》 北大核心 2025年第4期1040-1049,共10页
细胞力学转导是细胞感知力学信号并将其转化为化学信号的过程。细胞力学传感器包括PIEZO、TRPV4和整合素等。这些传感器可调节特定的病理生理过程,如纤维化、肿瘤发生以及细胞增殖、分化、迁徙等。近期研究发现,PIEZO、TRPV4和整合素通... 细胞力学转导是细胞感知力学信号并将其转化为化学信号的过程。细胞力学传感器包括PIEZO、TRPV4和整合素等。这些传感器可调节特定的病理生理过程,如纤维化、肿瘤发生以及细胞增殖、分化、迁徙等。近期研究发现,PIEZO、TRPV4和整合素通过感知力学刺激,进而激活胞内的信号通路,在骨癌痛等多种癌痛类型中发挥重要作用。本文对细胞力学传感器PIEZO、TRPV4及整合素在癌痛中的研究进展进行综述,为开发新型靶向细胞力学转导的癌痛治疗药物奠定基础。 展开更多
关键词 PIEZO TRPV4 整合素 癌痛 细胞力学传感器 力学转导
在线阅读 下载PDF
骨细胞的力学感受器 被引量:4
2
作者 刘艳伟 宫赫 +3 位作者 王新宇 杨启帆 刘舜 朱东 《医用生物力学》 CAS CSCD 北大核心 2024年第2期207-213,共7页
骨细胞是骨骼中最丰富和寿命最长的细胞,是骨重建的调节器。骨细胞在内分泌调节和钙磷酸盐代谢中发挥重要作用,也是力学刺激的主要响应者,感知力学刺激以直接或间接的方式对刺激做出反应。骨细胞中的力学转导是一个复杂而精细的调节过程... 骨细胞是骨骼中最丰富和寿命最长的细胞,是骨重建的调节器。骨细胞在内分泌调节和钙磷酸盐代谢中发挥重要作用,也是力学刺激的主要响应者,感知力学刺激以直接或间接的方式对刺激做出反应。骨细胞中的力学转导是一个复杂而精细的调节过程,涉及细胞与其周围环境、相邻细胞以及细胞内部不同功能的力学感受器之间的相互作用。目前已知的骨细胞主要力学感受器包括初级纤毛、Piezo离子通道、整合素、细胞外基质以及基于连接蛋白的细胞间连接。这些力学感受器在骨细胞中发挥着至关重要的作用,它们能够感知并转导力学信号,进而调节骨稳态。本文对5种力学感受器进行系统的介绍,以期为理解骨细胞如何响应力学刺激和维持骨组织稳态提供新的视角和认识。 展开更多
关键词 骨细胞 力学刺激 力学感受器
在线阅读 下载PDF
机械通气诱导气道塌陷中气道平滑肌细胞力学行为异常的研究进展 被引量:1
3
作者 罗明志 张向荣 +5 位作者 孙长雨 钟家缘 王春红 顾榕 倪凯 邓林红 《医用生物力学》 CAS CSCD 北大核心 2024年第5期998-1004,共7页
机械通气为呼吸危重症患者提供生命支持,但也引起致命的肺损伤(ventilator induced lung injury,VILI),后者因病理机制不明一直是呼吸与危重症学科的重大难题。近年的研究发现,一方面VILI伴随同一气道多点塌陷现象,但这一现象很难用传... 机械通气为呼吸危重症患者提供生命支持,但也引起致命的肺损伤(ventilator induced lung injury,VILI),后者因病理机制不明一直是呼吸与危重症学科的重大难题。近年的研究发现,一方面VILI伴随同一气道多点塌陷现象,但这一现象很难用传统塌陷模型加以解释。另一方面,机械通气条件下气道平滑肌细胞(airway smooth muscle cells,ASMC)发生力学行为异常并伴随Piezo1表达变化和内质网应激等现象。这些现象显示,机械通气导致ASMC的力学行为异常与气道多点塌陷以及VILI密切相关。但要从细胞力学角度解释机械通气导致气道塌陷和VILI的机制,还需要系统深入地研究机械通气条件下ASMC力学行为变化规律与气道塌陷和肺损伤的相互关系及其力-化学信号耦合过程。本文综述了近期有关机械通气条件下气道塌陷现象、机械通气相关高拉伸对ASMC力学行为的调控及力-化学信号耦合机制等方面的研究进展,以期为进一步探索ASMC力学行为异常在VILI病理机制中的作用、有效防治VILI的新药干预靶点,以及临床优化的机械通气策略等提供重要的参考依据和启发性的研究思路。 展开更多
关键词 机械通气 拉伸应变 气道平滑肌细胞 细胞力学响应 细胞力学感受器
在线阅读 下载PDF
Mechano-Sensing by Endothelial Primary Cilium
4
作者 Huan Yin Lizhen Wang +1 位作者 Bingmei MFu Yubo Fan 《医用生物力学》 EI CAS CSCD 北大核心 2019年第A01期178-179,共2页
Introduction Primary cilium is a non-motile microstructure,protruding from cell surface of most mammalian cells.It was previously thought to be vestigial.However,recent studies indicate that it may serve as one of the... Introduction Primary cilium is a non-motile microstructure,protruding from cell surface of most mammalian cells.It was previously thought to be vestigial.However,recent studies indicate that it may serve as one of the most vital mechanosensors for many types of cells such as epithelial and endothelial cells and osteocytes.Protruding from the apical membrane,the primary cilium can directly sense subtle variation of mechanical forces exerted on the cell and then transduce the mechanical cues into biochemical signals into the cell,although the mechanism remain elusive.Vascular endothelial cells(ECs)lining the inner wall of our blood vessels are continuously exposed to the blood flow.In order to maintain proper functions for the cardiovascular system,ECs should have a variety of mechano-sensors and transducers to sense the blood flow change and adjust the vessel size and transport across the vessel wall accordingly.Among more than a dozen recognized EC mechano-sensors,the primary cilium has drawn more and more attention recently.Primary cilium on endothelial cells is essential for the homeostasis of vessels.It is reported to be prevalent in areas of disturbed flow where atherosclerosis and intracranial aneurysm usually occur.Deficiencies of primary cilia may promote atherosclerosis,endothelial-to-mesenchymal transition(EndoMT)and loss of direction orientation,to name a few.Therefore understanding why the primary cilia are necessary to maintain the homeostasis of blood vessels and how will help us develop better treatment strategies for the common cardiovascular diseases.Dimension and structure of primary cilium Primary cilium is reported to be shorter than 8 in length and about 0.2 in diameter.The length of primary cilium varies in different cell types and under different conditions.The major structural components of the primary cilium include basal body,ciliary axoneme(consisting of nine doublet microtubules),ciliary membrane,transition zone,basal feet,and striated rootlets.Each part of the primary cilium is essential and has specific function.Current methods investigating the EC primary cilium as a mechano-sensor:Immunostaining and imaging techniques have been used to investigate the molecular mechanisms by which EC primary cilium serves as a mechano-sensor and transducer.It has been found that various proteins locate on the primary cilium,working together to maintain the function of primary cilium.Some proteins function as ion-channels,mediating Ca2+entry into the primary cilium.Some are involved in the cascade signal pathway.Others are related to the assembly and maintenance of primary cilium.Briefly,the flow induces the deflection of the EC primary cilium,which triggers calcium increase via opening of the PC2 cation channel that is responsible for calcium ion influx.This PC2 cation channel is localized to the primary cilium and is assumed to be stretch-activated.The resulting change in the intracellular calcium concentration then regulates numerous molecular activities inside the cell that contribute to vessel homeostasis.In addition to triggering calcium release,another mechanism has also been found in blood-pressure maintenance in the vasculature,where the vessel diameter is regulated by endothelial primary cilia through adjusting nitric oxide production.So far,little is known about the mechanical mechanism behind this deflection-triggered o-pening of signaling pathways.For example,what is the flow induced bending behavior and force distribution? What is the threshold value of stretch/defection for activating a corresponding signaling pathway? These all remain to be answered.In combination of image data and experiments,several computational models have been established to answer these questions.However,the current models are not able to include the complex structure of primary cilium and the model predictions are limited.Future studies With the development of super high resolution optical microscopy,more detailed images for the structural(molecular)components of EC primary cilia will be revealed,especially when the ECs are alive and the forces are known.Combining these experimental observations with more sophisticated mathematical models will elucidate the mechano-sensing mechanism of EC primary cilia,as the force and stress distribution on cilium along with other mechanical properties are still beyond the capability of experimental approaches due to the scales of the quantities involved.By using numerical approaches,much more detailed dynamic information can be obtained. 展开更多
关键词 ENDOTHELIAL CELLS PRIMARY CILIUM mechanosensor
在线阅读 下载PDF
软骨细胞力学信号转导在骨性关节炎中的作用 被引量:4
5
作者 阚天佑 严孟宁 《医用生物力学》 CAS CSCD 北大核心 2021年第3期485-490,共6页
异常力学负荷是骨关节炎发生的主要危险因素,可导致胶原降解、糖胺聚糖丢失和软骨细胞凋亡,引起软骨和软骨下骨破坏。然而,由于对软骨细胞力学传导认识不足,以及各种软骨修复再生手段的效果并不理想,故迫切需要了解软骨细胞力学传导过... 异常力学负荷是骨关节炎发生的主要危险因素,可导致胶原降解、糖胺聚糖丢失和软骨细胞凋亡,引起软骨和软骨下骨破坏。然而,由于对软骨细胞力学传导认识不足,以及各种软骨修复再生手段的效果并不理想,故迫切需要了解软骨细胞力学传导过程以及软骨机械性损伤发生机制,以期望为研究软骨损伤修复和再生提供参考。详细介绍力学信号如何从细胞外经由细胞膜传至细胞内力学感受器,并着重讨论相关力学传导的信号通路在骨性关节炎中的作用。 展开更多
关键词 软骨细胞 力学传导 力学感受器 骨性关节炎
在线阅读 下载PDF
骨细胞的功能:生物学研究和机理探讨 被引量:4
6
作者 谷国良 KalervoH. Vnnen 《中华骨质疏松和骨矿盐疾病杂志》 2009年第1期1-12,共12页
骨细胞(osteocyte)是在矿化骨基质内名副其实的骨的细胞(bone cell)。通过细胞突触,骨细胞彼此相连,很可能也与骨髓中某些细胞相接,从而形成三维细胞网络。从骨的超微结构看,骨细胞处于很理想的位置,可以担当骨生理的重要调节因子。然而... 骨细胞(osteocyte)是在矿化骨基质内名副其实的骨的细胞(bone cell)。通过细胞突触,骨细胞彼此相连,很可能也与骨髓中某些细胞相接,从而形成三维细胞网络。从骨的超微结构看,骨细胞处于很理想的位置,可以担当骨生理的重要调节因子。然而,由于骨细胞处于矿化骨基质深层,对其功能了解甚少。但随着新技术方法的应用,就有可能对这种成骨细胞系中的终末分化细胞进行深入研究,人们也由此对骨细胞的兴趣大增。骨细胞被认为是骨的机械应力感受器,它有可能参与骨重建。骨细胞能分泌具有调节成骨细胞功能的硬骨素(sclerostin)一种能降低肾脏磷回吸收的激素——调磷因子FGF23也主要源自骨细胞。随着我们对骨细胞了解的深入,清楚显示,骨细胞不仅能影响局部骨转换活性,而且对全身矿物质的体内平衡也有多种功能。因此,对骨细胞的研究,可以为代谢性骨病的治疗探索新的途径。 展开更多
关键词 骨细胞 骨微结构 骨重建 机械应力感受器 细胞分离和培养
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部