期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于SDP和MCNN-LSTM的齿轮箱故障诊断方法 被引量:6
1
作者 吴胜利 周燚 邢文婷 《振动与冲击》 EI CSCD 北大核心 2024年第15期126-132,178,共8页
齿轮箱在长期使用过程中,不可避免地会产生齿轮故障和轴承故障,严重影响传动精度和设备运行安全。基于此,针对齿轮箱常见故障类型,研究多通道对称点图案(symmetrized dot pattern, SDP)数据处理方法,并利用最小能量误差法实现SDP关键参... 齿轮箱在长期使用过程中,不可避免地会产生齿轮故障和轴承故障,严重影响传动精度和设备运行安全。基于此,针对齿轮箱常见故障类型,研究多通道对称点图案(symmetrized dot pattern, SDP)数据处理方法,并利用最小能量误差法实现SDP关键参数的选取。结合多尺度卷积神经网络(multi-scale convolutional neural network, MCNN)的空间处理优势、长短时记忆网络(long short term memory, LSTM)的时间处理优势及其良好的抗噪性和鲁棒性,提出了一种基于SDP和MCNN-LSTM的齿轮箱故障诊断模型。同时利用东南大学齿轮箱数据集,验证了基于SDP和MCNN-LSTM的齿轮箱故障诊断方法对齿轮和轴承常见故障类型特征提取的有效性,并与现有其他故障诊断方法进行对比,结果表明了所提方法具有更高的精度。 展开更多
关键词 齿轮箱故障诊断 对称点图案(SDP) 最小能量误差 多尺度卷积神经网络(mcnn) 长短时记忆网络(LSTM)
在线阅读 下载PDF
基于融合网络的HRRP目标识别方法 被引量:1
2
作者 吴文静 但波 王中训 《雷达科学与技术》 北大核心 2025年第2期192-198,205,共8页
高分辨一维距离像(High Resolution Range Profile,HRRP)常应用于雷达自动目标识别领域,HRRP数据结构复杂,从中提取稳定可靠的特征是HRRP目标识别的关键,本文提出一种融合网络模型,用于舰船HRRP的目标识别。模型首先通过BERT(Bidirectio... 高分辨一维距离像(High Resolution Range Profile,HRRP)常应用于雷达自动目标识别领域,HRRP数据结构复杂,从中提取稳定可靠的特征是HRRP目标识别的关键,本文提出一种融合网络模型,用于舰船HRRP的目标识别。模型首先通过BERT(Bidirectional Encoder Representations from Transformers)进行初步特征提取,再通过并行网络提取深度特征,左侧分支使用多尺度卷积神经网络(Multi‐scale Convolutional Neural Network,MCNN)模块提取不同尺度的局部特征信息,并通过SE(Squeeze‐and‐Excitation)对卷积结果进行优化,更好地关注数据中的关键信息,右侧分支使用双向门控循环网络(Bidirectional Gated Recurrent Unit,BiGRU)捕捉序列中的长期依赖关系,结合多头注意力模块可以更好地捕捉不同位置间的相关性,最后对结果进行拼接,最大程度地利用不同网络的优势,提升模型的分类性能。实验结果表明,模型能够有效学习HRRP序列中的特征,有较好的识别性能。 展开更多
关键词 高分辨距离像 BERT模块 mcnn网络 BiGRU网络
在线阅读 下载PDF
基于多尺度卷积神经网络和门控循环单元的离心泵叶轮故障诊断 被引量:1
3
作者 陶付东 智一凡 +4 位作者 李怀瑞 柳应倩 郝达 秦浩洋 付强 《机电工程》 北大核心 2025年第5期885-893,共9页
采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神... 采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神经网络的基础上引入了循环神经网络,建立了特征提取和故障分类模块,可以自动地对原始输入信号进行空间和时间特征提取并识别关键故障模式;然后,搭建了立式离心泵叶轮故障仿真实验台架,对叶轮不同故障下的泵体振动信号进行了采集,用于训练所提MCNN-GRU诊断模型;最后,利用MCNN和GRU搭建了的诊断模型和其他模型,对叶轮不同故障情况下的振动信号故障识别情况进行了对比,并对抗噪性能进行了分析。研究结果表明:无噪声情况下的单通道诊断准确率超过97.59%,在强噪声条件下多通道诊断准确率达99.13%,优于传统方法,表现出良好的抗噪性能;此外,通过三通道振动数据的融合,诊断准确率达100%,可验证多通道数据融合的优势。该研究结果可为离心泵叶轮故障诊断提供可靠的方案。 展开更多
关键词 离心泵 特征提取 多通道信息融合 多尺度卷积神经网络 门控循环单元
在线阅读 下载PDF
多传感器信息融合的轴承故障迁移诊断方法 被引量:5
4
作者 包从望 江伟 +1 位作者 张彩红 周大帅 《机电工程》 CAS 北大核心 2024年第5期878-885,共8页
在重型装备低速、重载、强噪声环境下,采用单一传感器难以全面获取轴承的故障诊断信息,导致故障识别率低、识别不稳定,致使变工况下轴承故障迁移诊断失效。针对以上问题,提出了一种多传感器信息融合的轴承故障迁移诊断方法。首先,结合... 在重型装备低速、重载、强噪声环境下,采用单一传感器难以全面获取轴承的故障诊断信息,导致故障识别率低、识别不稳定,致使变工况下轴承故障迁移诊断失效。针对以上问题,提出了一种多传感器信息融合的轴承故障迁移诊断方法。首先,结合传感器的通道数,构建了堆叠卷积神经网络(MCNNs)提取各个通道的故障特征;然后,在MCNNs中引入最小绝对收缩与选择算子(Lasso),并通过网络反向传播完成了特征权值的更新,从而获得了多通道特征的融合;最后,利用源域数据对模型进行了训练,提取了故障特征,并完成了特征融合,采用损失函数完成了模型参数的优化,将源域训练得到的模型结果作为目标域的初始模型,利用目标域样本对初始模型的参数进行了微调,从而完成了模型迁移;并进行了信息融合效果、方法对比以及传感器信息采集属性的性能实验。研究结果表明:传感器的安装位置对信息融合影响较大,MCNNs+Lasso方法具有较好的特征融合效果,平均迁移诊断精度为99.03%,部分精度可达99.97%,在多个变工况的迁移任务中表现出较高迁移精度和良好的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 多传感器信息融合 堆叠卷积神经网络 最小绝对收缩与选择算子 迁移学习
在线阅读 下载PDF
基于多尺度CNN和BiLSTM的船舶推进永磁同步电机故障诊断 被引量:5
5
作者 闫国华 胡以怀 《上海海事大学学报》 北大核心 2024年第4期83-91,116,共10页
鉴于船舶推进永磁同步电机(permanent magnet synchronous motor,PMSM)的匝间短路和永磁体不可逆均匀退磁故障可能导致严重的船舶航行事故,提出一种基于多尺度卷积神经网络(multi-scale convolutional neural network,MCNN)和双向长短... 鉴于船舶推进永磁同步电机(permanent magnet synchronous motor,PMSM)的匝间短路和永磁体不可逆均匀退磁故障可能导致严重的船舶航行事故,提出一种基于多尺度卷积神经网络(multi-scale convolutional neural network,MCNN)和双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)的多信号融合的故障诊断方法(MCNN-BiLSTM),用于诊断PMSM故障。该方法以振动和三相电流信号为输入,采用三列并行的不同尺度的CNN结构来提取信号的全局和局部特征;使用BiLSTM进一步提取特征并识别故障类型。在一台PMSM试验台架上进行多种工况下的故障模拟试验,结果表明与采用单一信号和其他深度学习算法的故障诊断方式相比,本文提出的故障诊断方法具有很好的抗噪声干扰能力和泛化能力。 展开更多
关键词 永磁同步电机(PMSM) 匝间短路 均匀退磁故障 多尺度卷积神经网路(mcnn) 双向长短期记忆(BiLSTM) 故障诊断 信号融合
在线阅读 下载PDF
基于空间维度循环感知网络的密集人群计数模型 被引量:5
6
作者 付倩慧 李庆奎 +1 位作者 傅景楠 王羽 《计算机应用》 CSCD 北大核心 2021年第2期544-549,共6页
考虑目前对具有透视畸变的高密度人群图像进行特征提取的局限性,提出了一种融合全局特征感知网络(GFPNet)和局部关联性特征感知网络(LAFPNet)的人群计数模型LMCNN。GFPNet是LMCNN的主干网络,将其输出的特征图进一步序列化并作为LAFPNet... 考虑目前对具有透视畸变的高密度人群图像进行特征提取的局限性,提出了一种融合全局特征感知网络(GFPNet)和局部关联性特征感知网络(LAFPNet)的人群计数模型LMCNN。GFPNet是LMCNN的主干网络,将其输出的特征图进一步序列化并作为LAFPNet的输入,再利用循环神经网络(RNN)在时序维度上对局部关联性特征感知的特点将单一的空间静态特征映射到具有局部序列关联性特征的特征空间,从而有效地削减了透视畸变对人群密度估计造成的影响。为了验证所提模型的有效性,在Shanghaitech Part A子集和UCF_CC_50数据集上与原子卷积空间金字塔网络(ACSPNet)进行对比,结果表明所提模型的平均绝对误差(MAE)分别至少减小了18.7%和20.30%,均方误差(MSE)分别至少减小了22.3%和22.6%。LMCNN注重空间维度上前后特征的相关性,通过对空间维度特征与单图像内序列特征的充分融合,减小了由透视畸变引起的人群计数误差,能更加准确地预测密集区域人数,提高人群密度回归精度。 展开更多
关键词 人群计数 人群密度估计 卷积神经网络 多列卷积神经网络 长短时记忆神经网络
在线阅读 下载PDF
基于一维卷积神经网络的列车异响识别系统研究 被引量:2
7
作者 付孟新 郭世伟 +1 位作者 王泽兴 丁建明 《电子测量技术》 北大核心 2023年第14期9-17,共9页
在列车行驶过程中,车内异响可作为反映车辆设备状态的信息源。为此提出一种基于1D-CNN的识别模型,对车辆异响进行识别,并设计列车异响识别系统。首先构建音频数据的试验样本库,然后利用MFCC提取异响数据样本的特征信息。针对列车噪声特... 在列车行驶过程中,车内异响可作为反映车辆设备状态的信息源。为此提出一种基于1D-CNN的识别模型,对车辆异响进行识别,并设计列车异响识别系统。首先构建音频数据的试验样本库,然后利用MFCC提取异响数据样本的特征信息。针对列车噪声特征与车辆状态类型间的映射关系复杂、难解耦的问题,构建一种基于MFCC输入的1D-MCNN对异响所蕴含的故障信息进行识别分类。最后对识别模型进行实验与优化,确定MFCC阶数、学习率与批尺寸等模型参数,采用t-SNE算法、混淆矩阵进行模型特征提取的分析评价。试验结果表明该方法对列车异响识别诊断效果较好,准确率达98.38%。 展开更多
关键词 高速列车 异响 卷积神经网络 诊断识别 MFCC-1D-mcnn模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部