期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
KdV-Burgers方程的一类新本性并行差分格式 被引量:1
1
作者 潘悦悦 杨晓忠 《应用数学和力学》 CSCD 北大核心 2023年第5期583-594,共12页
KdV-Burgers方程作为湍流规范方程,具有深刻的物理背景,其快速数值解法具有重要的实际应用价值.针对KdV-Burgers方程,提出了一种新型的并行差分格式.基于交替分段技术,结合经典Crank-Nicolson(C-N)格式、显格式和隐格式,构造了混合交替... KdV-Burgers方程作为湍流规范方程,具有深刻的物理背景,其快速数值解法具有重要的实际应用价值.针对KdV-Burgers方程,提出了一种新型的并行差分格式.基于交替分段技术,结合经典Crank-Nicolson(C-N)格式、显格式和隐格式,构造了混合交替分段Crank-Nicolson(MASC-N)差分格式.理论分析表明MASC-N格式是唯一可解、线性绝对稳定和二阶收敛的.数值试验表明,MASC-N格式比C-N格式具有更高的精度和效率.与ASE-I和ASC-N差分格式相比,MASC-N并行差分格式有最好的性能.表明该文的MASC-N并行差分方法能有效地求解KdV-Burgers方程. 展开更多
关键词 KDV-BURGERS方程 masc-n并行差分格式 线性绝对稳定性 收敛性 数值试验
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部