Ammonium dinitramide(ADN),as a high-energy oxidizer widely applied in the field of rocket and missile propellants,has a prominent issue of high hygroscopicity due to its strong polarity.The previous coating encapsulat...Ammonium dinitramide(ADN),as a high-energy oxidizer widely applied in the field of rocket and missile propellants,has a prominent issue of high hygroscopicity due to its strong polarity.The previous coating encapsulation methods have struggled to address the problems of uneven coating and polarity mismatch.This research innovatively introduces perfluorooctanoic acid(PFOA)as a polar transition intermediate layer.Utilizing the polarity of one end of it to adsorb on the surface of ADN through hydrogen bonds,the problem of polarity mismatch is effectively overcome.Meanwhile,the vibrational magnetron sputtering process has been first applied in the energetic field,with a special vibrating abutment enhancing ADN particle fluidity to solve coating non-uniformity,thus preparing prilled ADN@PFOA@PTFE core-dual-shell composites.Performance tests reveal that this composite material possesses excellent hydrophobic and anti-hygroscopic properties.When left at 25℃and 75%RH for 3 days,moisture absorption was reduced by more than 90%compared to pure ADN.Simultaneously,its thermal stability,heat release performance,and combustion performance have been improved.The research achievements optimize the storage conditions of ADN in the application of rocket and missile propellants,providing solid support and broad development prospects for technological innovation in military fields.展开更多
Copper is a versatile material,commonly utilized in power transmission and electronic devices,but its relative high reactivity necessitates a long-lasting protective technique.Here,we report a method that combines pla...Copper is a versatile material,commonly utilized in power transmission and electronic devices,but its relative high reactivity necessitates a long-lasting protective technique.Here,we report a method that combines plasma-enhanced non-equilibrium magnetron sputtering physical vapor deposition(PEUMS-PVD)and anodization to construct a self-healing three-dimensional Ti/Al-doped TiO_(2)nanotubes/Ti_(3)AlC_(2)coating on the surface of Cu substrates.This novel strategy enhances the corrosion resistance of copper substrates in marine environments,with corrosion current densities of up to 4.5643×10^(−8)A/cm^(2).Among them,the doping of nano-aluminum particles makes the coating self-healing.The mechanistic analysis of the corrosion behaviors during early immersion experiments was conducted using electrochemical noise,and revealed that during the initial stages of coating immersion,uniform corrosion predominates,with a minor occurrence of localized corrosion.展开更多
Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films h...Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.展开更多
Functionalized implants demonstrate an upgraded approach in orthopedic implants,aiming to achieve long term success through improved bio integration.Bioceramic coatings with multifunctionality have arisen as an effect...Functionalized implants demonstrate an upgraded approach in orthopedic implants,aiming to achieve long term success through improved bio integration.Bioceramic coatings with multifunctionality have arisen as an effective substitute for conventional coatings,owing to their combination of various properties that are essential for bio-implants,such as osteointegration and antibacterial character.In the present study,thin hopeite coatings were produced by Pulsed laser deposition(PLD)and radio frequency magnetron sputtering(RFMS)on Ti64 substrates.The obtained hopeite coatings were annealed at 500°C in ambient air and studied in terms of surface morphology,phase composition,surface roughness,adhesion strength,antibacterial efficacy,apatite forming ability,and surface wettability by scanning electron microscope(SEM),X-ray diffraction(XRD),atomic force microscope(AFM),tensometer,fluorescence-activated cell sorting(FACS),simulated body fluid(SBF)immersion test and contact angle goniometer,respectively.Furthermore,based on promising results obtained in the present work it can be summarized that the new generation multifunctional hopeite coating synthesized by two alternative new process routes of PLD and RFMS on Ti64 substrates,provides effective alternatives to conventional coatings,largely attributed to strong osteointegration and antibacterial character of deposited hopeite coating ensuring the overall stability of metallic orthopedic implants.展开更多
ZnO thin films were prepared by direct current(DC)reactive magnetron sputtering under different oxygen partial pressures.And then the samples were annealed in vacuum at 450℃.The effects of the oxygen partial pressure...ZnO thin films were prepared by direct current(DC)reactive magnetron sputtering under different oxygen partial pressures.And then the samples were annealed in vacuum at 450℃.The effects of the oxygen partial pressures and the treatment of annealing in vacuum on the photoluminescence and the concentration of six intrinsic defects in ZnO thin films such as oxygen vacancy(VO),zinc vacancy(VZn),antisite oxygen(OZn),antisite zinc(ZnO),interstitial oxygen(Oi)and interstitial zinc(Zni)were studied.The results show that a green photoluminescence peak at 520 nm can be observed in all the samples,whose intensity increases with increasing oxygen partial pressure;for the sample annealed in vacuum,the intensity of the green peak increases as well.The green photoluminescence peak observed in ZnO may be attributed to zinc vacancy,which probably originates from transitions between electrons in the conduction band and zinc vacancy levels,or from transitions between electrons in zinc vacancy levels and up valence band.展开更多
A simple and easily operated technique was developed to fabricate GaN films. GaN films possessing hexagonal wurtzite structure were fabricated on Si(111) substrates with ZnO buffer layers through nitriding Ga2O3 films...A simple and easily operated technique was developed to fabricate GaN films. GaN films possessing hexagonal wurtzite structure were fabricated on Si(111) substrates with ZnO buffer layers through nitriding Ga2O3 films in the tube quartz furnace. ZnO buffer layers and Ga3O3 films were deposited on Si substrates in turn by using radio frequency magnetron sputtering system before the nitriding process. The structure and composition of GaN films were studied by X-ray diffraction, selected area electron diffraction and Fourier transform infrared spectrophotometer. The morphologies of GaN films were studied by scanning electron microscopy. The results show that ZnO buffer layer improves the crystalline quality and the surface morphology of the films relative to the films grown directly on silicon substrates. The measurement result of room-temperature photoluminescence spectrum indicates that the photoluminescence peaks locate at 365 nm and 422 nm.展开更多
Co87Nb10Zr3,Co76Nb19Zr5,Co64Nb26Zr10 and Co64Nb16Zr20 amorphous films were deposited on noncrystalline glass substrates by DC unbalanced magnetron sputtering. The compositions of amorphous films were tailored in the l...Co87Nb10Zr3,Co76Nb19Zr5,Co64Nb26Zr10 and Co64Nb16Zr20 amorphous films were deposited on noncrystalline glass substrates by DC unbalanced magnetron sputtering. The compositions of amorphous films were tailored in the light of the individual deposition rate of Co,Nb and Zr. The amorphous films with the anticipated composition were prepared by means of co-sputtering Co,Nb and Zr targets simultaneously. It is indicated that there is interaction among three targets during co-sputtering. The morphology and composition of the films were observed by SEM,AFM and EDS. The structure and magnetic property were measured by XRD and physical property measurement system(PPMS) . The coercivity changes with the composition,varying from 240 to 1 600 A/m. After vacuum isothermal annealing at temperatures of 475,500,525 and 550 ℃ for 15 and 30 min,respectively,it is found that high Nb content is beneficial to improving thermal stability of amorphous films. The crystallized films have the mean grain size of 2-19 nm.展开更多
Hydrogenated microcrystalline silicon(μc-Si:H)films were prepared on glass and silicon substrates by radio frequency magnetron sputtering at 100°C using a mixture of argon(Ar)and hydrogen(H2)gasses as precursor ...Hydrogenated microcrystalline silicon(μc-Si:H)films were prepared on glass and silicon substrates by radio frequency magnetron sputtering at 100°C using a mixture of argon(Ar)and hydrogen(H2)gasses as precursor gas.The effects of the ratio of hydrogen flow(H2/(Ar+H2)%)on the microstructure were evaluated.Results show that the microstructure,bonding structure,and surface morphology of theμc-Si:H films can be tailored based on the ratio of hydrogen flow.An amorphous to crystalline phase transition occurred when the ratio of hydrogen flow increased up to 50%.The crystallinity increased and tended to stabilize with the increase in ratio of hydrogen flow from 40%to 70%.The surface roughness of thin films increased,and total hydrogen content decreased as the ratio of hydrogen flow increased.Allμc-Si:H films have a preferred(111)orientation,independent of the ratio of hydrogen flow.And theμc-Si:H films had a dense structure,which shows their excellent resistance to post-oxidation.展开更多
本文采用电弧离子镀(Arc ion plating,AIP)和高功率脉冲磁控溅射(High power impulse magnetron sputtering,HiPIMS)复合方法,通过调控HiPIMS占空比在M2高速钢基体和单晶硅片上沉积TiZrN/TiN纳米多层膜,探究HiPIMS占空比对TiZrN/TiN纳...本文采用电弧离子镀(Arc ion plating,AIP)和高功率脉冲磁控溅射(High power impulse magnetron sputtering,HiPIMS)复合方法,通过调控HiPIMS占空比在M2高速钢基体和单晶硅片上沉积TiZrN/TiN纳米多层膜,探究HiPIMS占空比对TiZrN/TiN纳米多层膜微观结构和性能的影响规律。结果表明:随着HiPIMS占空比的增加,TiZrN/TiN纳米多层膜表面大颗粒数量呈先减少后增加趋势,同时薄膜厚度呈先减小后增大趋势。随着HiPIMS占空比从2%增加10%,TiZrN/TiN纳米多层膜择优取向从(111)晶面转变为(220)晶面,膜基结合力等级均为HF1级,硬度均在33 GPa以上,稳定摩擦因数在0.79左右。当HiPIMS占空比为2%时,TiZrN/TiN纳米多层膜的磨损率达到最小,为1.73×10^(-8) mm^(3)/(N·mm),薄膜的耐磨损性能最好。当HiPIMS占空比为6%时,TiZrN/TiN纳米多层膜的硬度和弹性模量分别增加到43.73GPa和362.98 GPa,自腐蚀电位可达到-0.39 V(vs SCE),自腐蚀电流密度为0.731μA/cm^(2),薄膜耐腐蚀性能最强,腐蚀速率较低。综合对比可知,HiPIMS占空比为6%,是TiZrN/TiN纳米多层膜制备的最佳工艺参数。展开更多
ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced...ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced by the X-ray diffraction and scanning electron microscopy results.The lattice constants,as determined by X-ray diffraction,contradict the disparity in Ta and Zn ion radii,which is attributed to the impact of interstitial defects.This inconsistency introduces variations in carrier concentration in this experiment compared with prior studies.Subsequent exploration of the luminescent characteristics and emission mechanism of defect levels in Ta-doped ZnO films was conducted through photoluminescence.Furthermore,the factors influencing the bandgap are discussed.展开更多
基金funded by Open Research Fund Program of National Key Laboratory of Aerospace Chemical Power(NKLACP120241B04)National Natural Science Foundation of China Youth Science Foundation(12402450)。
文摘Ammonium dinitramide(ADN),as a high-energy oxidizer widely applied in the field of rocket and missile propellants,has a prominent issue of high hygroscopicity due to its strong polarity.The previous coating encapsulation methods have struggled to address the problems of uneven coating and polarity mismatch.This research innovatively introduces perfluorooctanoic acid(PFOA)as a polar transition intermediate layer.Utilizing the polarity of one end of it to adsorb on the surface of ADN through hydrogen bonds,the problem of polarity mismatch is effectively overcome.Meanwhile,the vibrational magnetron sputtering process has been first applied in the energetic field,with a special vibrating abutment enhancing ADN particle fluidity to solve coating non-uniformity,thus preparing prilled ADN@PFOA@PTFE core-dual-shell composites.Performance tests reveal that this composite material possesses excellent hydrophobic and anti-hygroscopic properties.When left at 25℃and 75%RH for 3 days,moisture absorption was reduced by more than 90%compared to pure ADN.Simultaneously,its thermal stability,heat release performance,and combustion performance have been improved.The research achievements optimize the storage conditions of ADN in the application of rocket and missile propellants,providing solid support and broad development prospects for technological innovation in military fields.
基金Projects(42106051,42006046,U2106206) supported by the National Natural Science Foundation of ChinaProject(22373501D) supported by Hebei Provincial Key R&D Program,China。
文摘Copper is a versatile material,commonly utilized in power transmission and electronic devices,but its relative high reactivity necessitates a long-lasting protective technique.Here,we report a method that combines plasma-enhanced non-equilibrium magnetron sputtering physical vapor deposition(PEUMS-PVD)and anodization to construct a self-healing three-dimensional Ti/Al-doped TiO_(2)nanotubes/Ti_(3)AlC_(2)coating on the surface of Cu substrates.This novel strategy enhances the corrosion resistance of copper substrates in marine environments,with corrosion current densities of up to 4.5643×10^(−8)A/cm^(2).Among them,the doping of nano-aluminum particles makes the coating self-healing.The mechanistic analysis of the corrosion behaviors during early immersion experiments was conducted using electrochemical noise,and revealed that during the initial stages of coating immersion,uniform corrosion predominates,with a minor occurrence of localized corrosion.
基金supported by the National Natural Science Foundation of China(22275180)the National Key Research and Development Program of China(2019YFA0405600)the Collaborative Innovation Program of Hefei Science Center,CAS,and the University Synergy Innovation Program of Anhui Province(GXXT-2023-031).
文摘Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.
文摘Functionalized implants demonstrate an upgraded approach in orthopedic implants,aiming to achieve long term success through improved bio integration.Bioceramic coatings with multifunctionality have arisen as an effective substitute for conventional coatings,owing to their combination of various properties that are essential for bio-implants,such as osteointegration and antibacterial character.In the present study,thin hopeite coatings were produced by Pulsed laser deposition(PLD)and radio frequency magnetron sputtering(RFMS)on Ti64 substrates.The obtained hopeite coatings were annealed at 500°C in ambient air and studied in terms of surface morphology,phase composition,surface roughness,adhesion strength,antibacterial efficacy,apatite forming ability,and surface wettability by scanning electron microscope(SEM),X-ray diffraction(XRD),atomic force microscope(AFM),tensometer,fluorescence-activated cell sorting(FACS),simulated body fluid(SBF)immersion test and contact angle goniometer,respectively.Furthermore,based on promising results obtained in the present work it can be summarized that the new generation multifunctional hopeite coating synthesized by two alternative new process routes of PLD and RFMS on Ti64 substrates,provides effective alternatives to conventional coatings,largely attributed to strong osteointegration and antibacterial character of deposited hopeite coating ensuring the overall stability of metallic orthopedic implants.
基金Project(60571043)supported by the National Natural Science Foundation of China
文摘ZnO thin films were prepared by direct current(DC)reactive magnetron sputtering under different oxygen partial pressures.And then the samples were annealed in vacuum at 450℃.The effects of the oxygen partial pressures and the treatment of annealing in vacuum on the photoluminescence and the concentration of six intrinsic defects in ZnO thin films such as oxygen vacancy(VO),zinc vacancy(VZn),antisite oxygen(OZn),antisite zinc(ZnO),interstitial oxygen(Oi)and interstitial zinc(Zni)were studied.The results show that a green photoluminescence peak at 520 nm can be observed in all the samples,whose intensity increases with increasing oxygen partial pressure;for the sample annealed in vacuum,the intensity of the green peak increases as well.The green photoluminescence peak observed in ZnO may be attributed to zinc vacancy,which probably originates from transitions between electrons in the conduction band and zinc vacancy levels,or from transitions between electrons in zinc vacancy levels and up valence band.
基金Projects(90301002 90201025) supported by the National Natural Science Foundation of China
文摘A simple and easily operated technique was developed to fabricate GaN films. GaN films possessing hexagonal wurtzite structure were fabricated on Si(111) substrates with ZnO buffer layers through nitriding Ga2O3 films in the tube quartz furnace. ZnO buffer layers and Ga3O3 films were deposited on Si substrates in turn by using radio frequency magnetron sputtering system before the nitriding process. The structure and composition of GaN films were studied by X-ray diffraction, selected area electron diffraction and Fourier transform infrared spectrophotometer. The morphologies of GaN films were studied by scanning electron microscopy. The results show that ZnO buffer layer improves the crystalline quality and the surface morphology of the films relative to the films grown directly on silicon substrates. The measurement result of room-temperature photoluminescence spectrum indicates that the photoluminescence peaks locate at 365 nm and 422 nm.
基金Project(2007CB607602) supported by the National Basic Research Program of China
文摘Co87Nb10Zr3,Co76Nb19Zr5,Co64Nb26Zr10 and Co64Nb16Zr20 amorphous films were deposited on noncrystalline glass substrates by DC unbalanced magnetron sputtering. The compositions of amorphous films were tailored in the light of the individual deposition rate of Co,Nb and Zr. The amorphous films with the anticipated composition were prepared by means of co-sputtering Co,Nb and Zr targets simultaneously. It is indicated that there is interaction among three targets during co-sputtering. The morphology and composition of the films were observed by SEM,AFM and EDS. The structure and magnetic property were measured by XRD and physical property measurement system(PPMS) . The coercivity changes with the composition,varying from 240 to 1 600 A/m. After vacuum isothermal annealing at temperatures of 475,500,525 and 550 ℃ for 15 and 30 min,respectively,it is found that high Nb content is beneficial to improving thermal stability of amorphous films. The crystallized films have the mean grain size of 2-19 nm.
基金Projects(51505050,51805063) supported by the National Natural Science Foundation of China for Young ScholarsProjects(KJ1500942,KJQN201801134) supported by the Scientific and Technological Research Program of Chongqing Education Commission of ChinaProjects(cstc2017jcyjAX0075,cstc2015jcyj A50033) supported by the Chongqing Research Program of Basic Research and Frontier Technology,China
文摘Hydrogenated microcrystalline silicon(μc-Si:H)films were prepared on glass and silicon substrates by radio frequency magnetron sputtering at 100°C using a mixture of argon(Ar)and hydrogen(H2)gasses as precursor gas.The effects of the ratio of hydrogen flow(H2/(Ar+H2)%)on the microstructure were evaluated.Results show that the microstructure,bonding structure,and surface morphology of theμc-Si:H films can be tailored based on the ratio of hydrogen flow.An amorphous to crystalline phase transition occurred when the ratio of hydrogen flow increased up to 50%.The crystallinity increased and tended to stabilize with the increase in ratio of hydrogen flow from 40%to 70%.The surface roughness of thin films increased,and total hydrogen content decreased as the ratio of hydrogen flow increased.Allμc-Si:H films have a preferred(111)orientation,independent of the ratio of hydrogen flow.And theμc-Si:H films had a dense structure,which shows their excellent resistance to post-oxidation.
基金supported by the National Natural Science Foundation of China(61774140).
文摘ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced by the X-ray diffraction and scanning electron microscopy results.The lattice constants,as determined by X-ray diffraction,contradict the disparity in Ta and Zn ion radii,which is attributed to the impact of interstitial defects.This inconsistency introduces variations in carrier concentration in this experiment compared with prior studies.Subsequent exploration of the luminescent characteristics and emission mechanism of defect levels in Ta-doped ZnO films was conducted through photoluminescence.Furthermore,the factors influencing the bandgap are discussed.