期刊文献+
共找到358篇文章
< 1 2 18 >
每页显示 20 50 100
Managing cotton canopy architecture for machine picking cotton via high plant density and plant growth retardants 被引量:1
1
作者 LAKSHMANAN Sankar SOMASUNDARAM Selvaraj +4 位作者 SHRI RANGASAMI Silambiah ANANTHARAJU Pokkharu VIJAYALAKSHMI Dhashnamurthi RAGAVAN Thiruvengadam DHAMODHARAN Paramasivam 《Journal of Cotton Research》 2025年第1期102-114,共13页
Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planti... Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity. 展开更多
关键词 COTTON High density planting system Plant growth retardant Canopy management Defoliators machine picking Yield improvement
在线阅读 下载PDF
Graded density impactor design via machine learning and numerical simulation:Achieve controllable stress and strain rate 被引量:1
2
作者 Yahui Huang Ruizhi Zhang +6 位作者 Shuaixiong Liu Jian Peng Yong Liu Han Chen Jian Zhang Guoqiang Luo Qiang Shen 《Defence Technology(防务技术)》 2025年第9期262-273,共12页
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ... The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI. 展开更多
关键词 machine learning Numerical simulation Graded density impactor Controllable stress-strain rate loading Response surface methodology
在线阅读 下载PDF
Machine learning models for optimization, validation, and prediction of light emitting diodes with kinetin based basal medium for in vitro regeneration of upland cotton (Gossypium hirsutum L.)
3
作者 ÖZKAT Gözde Yalçın AASIM Muhammad +2 位作者 BAKHSH Allah ALI Seyid Amjad ÖZCAN Sebahattin 《Journal of Cotton Research》 2025年第2期228-241,共14页
Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics,but recalcitrance nature of cotton makes it difficult to develop in vitro regeneration.Cotton’s recalcitrance is inf... Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics,but recalcitrance nature of cotton makes it difficult to develop in vitro regeneration.Cotton’s recalcitrance is influenced by genotype,explant type,and environmental conditions.To overcome these issues,this study uses different machine learning-based predictive models by employing multiple input factors.Cotyledonary node explants of two commercial cotton cultivars(STN-468 and GSN-12)were isolated from 7–8 days old seedlings,preconditioned with 5,10,and 20 mg·L^(-1) kinetin(KIN)for 10 days.Thereafter,explants were postconditioned on full Murashige and Skoog(MS),1/2MS,1/4MS,and full MS+0.05 mg·L^(-1) KIN,cultured in growth room enlightened with red and blue light-emitting diodes(LED)combination.Statistical analysis(analysis of variance,regression analysis)was employed to assess the impact of different treatments on shoot regeneration,with artificial intelligence(AI)models used for confirming the findings.Results GSN-12 exhibited superior shoot regeneration potential compared with STN-468,with an average of 4.99 shoots per explant versus 3.97.Optimal results were achieved with 5 mg·L^(-1) KIN preconditioning,1/4MS postconditioning,and 80%red LED,with maximum of 7.75 shoot count for GSN-12 under these conditions;while STN-468 reached 6.00 shoots under the conditions of 10 mg·L^(-1) KIN preconditioning,MS with 0.05 mg·L^(-1) KIN(postconditioning)and 75.0%red LED.Rooting was successfully achieved with naphthalene acetic acid and activated charcoal.Additionally,three different powerful AI-based models,namely,extreme gradient boost(XGBoost),random forest(RF),and the artificial neural network-based multilayer perceptron(MLP)regression models validated the findings.Conclusion GSN-12 outperformed STN-468 with optimal results from 5 mg·L^(-1) KIN+1/4MS+80%red LED.Application of machine learning-based prediction models to optimize cotton tissue culture protocols for shoot regeneration is helpful to improve cotton regeneration efficiency. 展开更多
关键词 machine learning COTTON In vitro regeneration Light emitting diodes OPTIMIZATION KINETIN
在线阅读 下载PDF
Accurate prediction of blast-induced ground vibration intensity using optimized machine learning models
4
作者 Lihua Chen Yewuhalashet Fissha +3 位作者 Mahdi Hasanipanah Refka Ghodhbani Hesam Dehghani Jitendra Khatti 《Defence Technology(防务技术)》 2025年第10期32-46,共15页
Blast-induced ground vibration,quantified by peak particle velocity(PPV),is a crucial factor in mitigating environmental and structural risks in mining and geotechnical engineering.Accurate PPV prediction facilitates ... Blast-induced ground vibration,quantified by peak particle velocity(PPV),is a crucial factor in mitigating environmental and structural risks in mining and geotechnical engineering.Accurate PPV prediction facilitates safer and more sustainable blasting operations by minimizing adverse impacts and ensuring regulatory compliance.This study presents an advanced predictive framework integrating Cat Boost(CB)with nature-inspired optimization algorithms,including the Bat Algorithm(BAT),Sparrow Search Algorithm(SSA),Butterfly Optimization Algorithm(BOA),and Grasshopper Optimization Algorithm(GOA).A comprehensive dataset from the Sarcheshmeh Copper Mine in Iran was utilized to develop and evaluate these models using key performance metrics such as the Index of Agreement(IoA),Nash-Sutcliffe Efficiency(NSE),and the coefficient of determination(R^(2)).The hybrid CB-BOA model outperformed other approaches,achieving the highest accuracy(R^(2)=0.989)and the lowest prediction errors.SHAP analysis identified Distance(Di)as the most influential variable affecting PPV,while uncertainty analysis confirmed CB-BOA as the most reliable model,featuring the narrowest prediction interval.These findings highlight the effectiveness of hybrid machine learning models in refining PPV predictions,contributing to improved blast design strategies,enhanced structural safety,and reduced environmental impacts in mining and geotechnical engineering. 展开更多
关键词 Ground vibrations Peak particle velocity machine learning CatBoost Nature-inspired optimization Blasting safety
在线阅读 下载PDF
Comparative analysis of machine learning and statistical models for cotton yield prediction in major growing districts of Karnataka,India
5
作者 THIMMEGOWDA M.N. MANJUNATHA M.H. +4 位作者 LINGARAJ H. SOUMYA D.V. JAYARAMAIAH R. SATHISHA G.S. NAGESHA L. 《Journal of Cotton Research》 2025年第1期40-60,共21页
Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,su... Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,such as textile,medicine,and automobile industries,it has greater commercial importance.The crop’s performance is greatly influenced by prevailing weather dynamics.As climate changes,assessing how weather changes affect crop performance is essential.Among various techniques that are available,crop models are the most effective and widely used tools for predicting yields.Results This study compares statistical and machine learning models to assess their ability to predict cotton yield across major producing districts of Karnataka,India,utilizing a long-term dataset spanning from 1990 to 2023 that includes yield and weather factors.The artificial neural networks(ANNs)performed superiorly with acceptable yield deviations ranging within±10%during both vegetative stage(F1)and mid stage(F2)for cotton.The model evaluation metrics such as root mean square error(RMSE),normalized root mean square error(nRMSE),and modelling efficiency(EF)were also within the acceptance limits in most districts.Furthermore,the tested ANN model was used to assess the importance of the dominant weather factors influencing crop yield in each district.Specifically,the use of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-ture had a major influence on cotton yield in most of the yield predicted districts.These differences highlighted the differential interactions of weather factors in each district for cotton yield formation,highlighting individual response of each weather factor under different soils and management conditions over the major cotton growing districts of Karnataka.Conclusions Compared with statistical models,machine learning models such as ANNs proved higher efficiency in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-tion at different growth stages.This highlights the best suitability of ANNs for yield forecasting in rainfed conditions and for the study on relative impacts of weather factors on yield.Thus,the study aims to provide valuable insights to support stakeholders in planning effective crop management strategies and formulating relevant policies. 展开更多
关键词 COTTON machine learning models Statistical models Yield forecast Artificial neural network Weather variables
在线阅读 下载PDF
Machine learning improve the discrimination of raw cotton from different countries
6
作者 WANG Tian XU Shuangjiao +4 位作者 WEI Jingyan WANG Ming DU Weidong TIAN Xinquan MA Lei 《Journal of Cotton Research》 2025年第3期444-456,共13页
Background The geo-traceability of cotton is crucial for ensuring the quality and integrity of cotton brands. However, effective methods for achieving this traceability are currently lacking. This study investigates t... Background The geo-traceability of cotton is crucial for ensuring the quality and integrity of cotton brands. However, effective methods for achieving this traceability are currently lacking. This study investigates the potential of explainable machine learning for the geo-traceability of raw cotton.Results The findings indicate that principal component analysis(PCA) exhibits limited effectiveness in tracing cotton origins. In contrast, partial least squares discriminant analysis(PLS-DA) demonstrates superior classification performance, identifying seven discriminating variables: Na, Mn, Ba, Rb, Al, As, and Pb. The use of decision tree(DT), support vector machine(SVM), and random forest(RF) models for origin discrimination yielded accuracies of 90%, 87%, and 97%, respectively. Notably, the light gradient boosting machine(Light GBM) model achieved perfect performance metrics, with accuracy, precision, and recall rate all reaching 100% on the test set. The output of the Light GBM model was further evaluated using the SHapley Additive ex Planation(SHAP) technique, which highlighted differences in the elemental composition of raw cotton from various countries. Specifically, the elements Pb, Ni, Na, Al, As, Ba, and Rb significantly influenced the model's predictions.Conclusion These findings suggest that explainable machine learning techniques can provide insights into the complex relationships between geographic information and raw cotton. Consequently, these methodologies enhances the precision and reliability of geographic traceability for raw cotton. 展开更多
关键词 Raw cotton Mineral elements machine learning Shapley value
在线阅读 下载PDF
Machine learning model comparison and ensemble for predicting different morphological fractions of heavy metal elements in tailings and mine waste
7
作者 FENG Yu-xin HU Tao +4 位作者 ZHOU Na-na ZHOU Min BARKHORDARI Mohammad Sadegh LI Ke-chao QI Chong-chong 《Journal of Central South University》 2025年第9期3557-3573,共17页
Driven by rapid technological advancements and economic growth,mineral extraction and metal refining have increased dramatically,generating huge volumes of tailings and mine waste(TMWs).Investigating the morphological... Driven by rapid technological advancements and economic growth,mineral extraction and metal refining have increased dramatically,generating huge volumes of tailings and mine waste(TMWs).Investigating the morphological fractions of heavy metals and metalloids(HMMs)in TMWs is key to evaluating their leaching potential into the environment;however,traditional experiments are time-consuming and labor-intensive.In this study,10 machine learning(ML)algorithms were used and compared for rapidly predicting the morphological fractions of HMMs in TMWs.A dataset comprising 2376 data points was used,with mineral composition,elemental properties,and total concentration used as inputs and concentration of morphological fraction used as output.After grid search optimization,the extra tree model performed the best,achieving coefficient of determination(R2)of 0.946 and 0.942 on the validation and test sets,respectively.Electronegativity was found to have the greatest impact on the morphological fraction.The models’performance was enhanced by applying an ensemble method to the top three optimal ML models,including gradient boosting decision tree,extra trees and categorical boosting.Overall,the proposed framework can accurately predict the concentrations of different morphological fractions of HMMs in TMWs.This approach can minimize detection time,aid in the safe management and recovery of TMWs. 展开更多
关键词 tailings and mine waste morphological fractions model comparison machine learning model ensemble
在线阅读 下载PDF
High-precision quantitative analysis of 3-nitro-1,2,4-triazol-5-one(NTO)concentration based on ATR-FTIR spectroscopy and machine learning
8
作者 Zhe Zhang Zhuowei Sun +4 位作者 Haoming Zou Xijuan Lv Ziyang Guo Shuai Zhao Qinghai Shu 《Defence Technology(防务技术)》 2025年第10期131-141,共11页
3-Nitro-1,2,4-triazol-5-one(NTO)is a typical high-energy,low-sensitivity explosive,and accurate concentration monitoring is critical for crystallization process control.In this study,a high-precision quantitative anal... 3-Nitro-1,2,4-triazol-5-one(NTO)is a typical high-energy,low-sensitivity explosive,and accurate concentration monitoring is critical for crystallization process control.In this study,a high-precision quantitative analytical model for NTO concentration in ethanol solutions was developed by integrating real-time ATR-FTIR spectroscopy with chemometric and machine learning techniques.Dynamic spectral data were obtained by designing multi-concentration gradient heating-cooling cycle experiments,abnormal samples were eliminated using the isolation forest algorithm,and the effects of various preprocessing methods on model performance were systematically evaluated.The results show that partial least squares regression(PLSR)exhibits superior generalization ability compared to other models.Vibrational bands corresponding to C=O and–NO_(2)were identified as key predictors for concentration estimation.This work provides an efficient and reliable solution for real-time concentration monitoring during NTO crystallization and holds significant potential for process analytical applications in energetic material manufacturing. 展开更多
关键词 ATR-FTIR spectroscopy machine learning Quantitative analysis
在线阅读 下载PDF
Damage prediction of rear plate in Whipple shields based on machine learning method
9
作者 Chenyang Wu Xiangbiao Liao +1 位作者 Lvtan Chen Xiaowei Chen 《Defence Technology(防务技术)》 2025年第8期52-68,共17页
A typical Whipple shield consists of double-layered plates with a certain gap.The space debris impacts the outer plate and is broken into a debris cloud(shattered,molten,vaporized)with dispersed energy and momentum,wh... A typical Whipple shield consists of double-layered plates with a certain gap.The space debris impacts the outer plate and is broken into a debris cloud(shattered,molten,vaporized)with dispersed energy and momentum,which reduces the risk of penetrating the bulkhead.In the realm of hypervelocity impact,strain rate(>10^(5)s^(-1))effects are negligible,and fluid dynamics is employed to describe the impact process.Efficient numerical tools for precisely predicting the damage degree can greatly accelerate the design and optimization of advanced protective structures.Current hypervelocity impact research primarily focuses on the interaction between projectile and front plate and the movement of debris cloud.However,the damage mechanism of debris cloud impacts on rear plates-the critical threat component-remains underexplored owing to complex multi-physics processes and prohibitive computational costs.Existing approaches,ranging from semi-empirical equations to a machine learningbased ballistic limit prediction method,are constrained to binary penetration classification.Alternatively,the uneven data from experiments and simulations caused these methods to be ineffective when the projectile has irregular shapes and complicate flight attitude.Therefore,it is urgent to develop a new damage prediction method for predicting the rear plate damage,which can help to gain a deeper understanding of the damage mechanism.In this study,a machine learning(ML)method is developed to predict the damage distribution in the rear plate.Based on the unit velocity space,the discretized information of debris cloud and rear plate damage from rare simulation cases is used as input data for training the ML models,while the generalization ability for damage distribution prediction is tested by other simulation cases with different attack angles.The results demonstrate that the training and prediction accuracies using the Random Forest(RF)algorithm significantly surpass those using Artificial Neural Networks(ANNs)and Support Vector Machine(SVM).The RF-based model effectively identifies damage features in sparsely distributed debris cloud and cumulative effect.This study establishes an expandable new dataset that accommodates additional parameters to improve the prediction accuracy.Results demonstrate the model's ability to overcome data imbalance limitations through debris cloud features,enabling rapid and accurate rear plate damage prediction across wider scenarios with minimal data requirements. 展开更多
关键词 Damage prediction of rear plate Cumulative effect of debris cloud Whipple shield machine learning Random forest
在线阅读 下载PDF
Self-adaptive large neighborhood search algorithm for parallel machine scheduling problems 被引量:8
10
作者 Pei Wang Gerhard Reinelt Yuejin Tan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期208-215,共8页
A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely no... A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis. 展开更多
关键词 non-identical parallel machine scheduling problem with multiple time windows (NPMSPMTW) oversubscribed self- adaptive large neighborhood search (SALNS) machine learning.
在线阅读 下载PDF
Time series online prediction algorithm based on least squares support vector machine 被引量:8
11
作者 吴琼 刘文颖 杨以涵 《Journal of Central South University of Technology》 EI 2007年第3期442-446,共5页
Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive cal... Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive calculation of block matrix, a new time series online prediction algorithm based on improved LS-SVM was proposed. The historical training results were fully utilized and the computing speed of LS-SVM was enhanced. Then, the improved algorithm was applied to timc series online prediction. Based on the operational data provided by the Northwest Power Grid of China, the method was used in the transient stability prediction of electric power system. The results show that, compared with the calculation time of the traditional LS-SVM(75 1 600 ms), that of the proposed method in different time windows is 40-60 ms, proposed method is above 0.8. So the improved method is online prediction. and the prediction accuracy(normalized root mean squared error) of the better than the traditional LS-SVM and more suitable for time series online prediction. 展开更多
关键词 time series prediction machine learning support vector machine statistical learning theory
在线阅读 下载PDF
Machine learning for predicting the outcome of terminal ballistics events 被引量:4
12
作者 Shannon Ryan Neeraj Mohan Sushma +4 位作者 Arun Kumar AV Julian Berk Tahrima Hashem Santu Rana Svetha Venkatesh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期14-26,共13页
Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression mode... Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression models,extreme gradient boosting(XGBoost),artificial neural network(ANN),support vector regression(SVR),and Gaussian process regression(GP),on two common terminal ballistics’ problems:(a)predicting the V50ballistic limit of monolithic metallic armour impacted by small and medium calibre projectiles and fragments,and(b) predicting the depth to which a projectile will penetrate a target of semi-infinite thickness.To achieve this we utilise two datasets,each consisting of approximately 1000samples,collated from public release sources.We demonstrate that all four model types provide similarly excellent agreement when interpolating within the training data and diverge when extrapolating outside this range.Although extrapolation is not advisable for ML-based regression models,for applications such as lethality/survivability analysis,such capability is required.To circumvent this,we implement expert knowledge and physics-based models via enforced monotonicity,as a Gaussian prior mean,and through a modified loss function.The physics-informed models demonstrate improved performance over both classical physics-based models and the basic ML regression models,providing an ability to accurately fit experimental data when it is available and then revert to the physics-based model when not.The resulting models demonstrate high levels of predictive accuracy over a very wide range of projectile types,target materials and thicknesses,and impact conditions significantly more diverse than that achievable from any existing analytical approach.Compared with numerical analysis tools such as finite element solvers the ML models run orders of magnitude faster.We provide some general guidelines throughout for the development,application,and reporting of ML models in terminal ballistics problems. 展开更多
关键词 machine learning Artificial intelligence Physics-informed machine learning Terminal ballistics Armour
在线阅读 下载PDF
改进的Tabu Machine网络求解最大割问题 被引量:1
13
作者 刘建军 《计算机应用与软件》 CSCD 2011年第8期169-172,共4页
为了提高Tabu Machine网络处理最大割问题时解的质量,改进原有算法的禁忌搜索策略,并且通过结合局部搜索策略和分布估计策略,形成一种新的网络HNNTS-EDA。此网络有较强的局部搜索能力和脱离局部最优值的能力。将HNNTS-EDA网络与多种经... 为了提高Tabu Machine网络处理最大割问题时解的质量,改进原有算法的禁忌搜索策略,并且通过结合局部搜索策略和分布估计策略,形成一种新的网络HNNTS-EDA。此网络有较强的局部搜索能力和脱离局部最优值的能力。将HNNTS-EDA网络与多种经典算法在相同测试数据上进行对比测试,实验结果表明HNNTS-EDA网络具有更强的寻优能力。 展开更多
关键词 Tabu machine 网络 自适应禁忌搜索 分布估计策略 最大割问题
在线阅读 下载PDF
Physics-informed machine learning model for prediction of ground reflected wave peak overpressure 被引量:1
14
作者 Haoyu Zhang Yuxin Xu +1 位作者 Lihan Xiao Canjie Zhen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期119-133,共15页
The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elem... The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elements. Aiming at the problem of insufficient accuracy of the existing physical models for predicting the peak overpressure of ground reflected waves, two physics-informed machine learning models are constructed. The results demonstrate that the machine learning models, which incorporate physical information by predicting the deviation between the physical model and actual values and adding a physical loss term in the loss function, can accurately predict both the training and out-oftraining dataset. Compared to existing physical models, the average relative error in the predicted training domain is reduced from 17.459%-48.588% to 2%, and the proportion of average relative error less than 20% increased from 0% to 59.4% to more than 99%. In addition, the relative average error outside the prediction training set range is reduced from 14.496%-29.389% to 5%, and the proportion of relative average error less than 20% increased from 0% to 71.39% to more than 99%. The inclusion of a physical loss term enforcing monotonicity in the loss function effectively improves the extrapolation performance of machine learning. The findings of this study provide valuable reference for explosion hazard assessment and anti-explosion structural design in various fields. 展开更多
关键词 Blast shock wave Peak overpressure machine learning Physics-informed machine learning
在线阅读 下载PDF
Multiclassification algorithm and its realization based on least square support vector machine algorithm
15
作者 Fan Youping Chen Yunping +1 位作者 Sun Wansheng Li Yu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期901-907,共7页
As a new type of learning machine developed on the basis of statistics learning theory, support vector machine (SVM) plays an important role in knowledge discovering and knowledge updating by constructing non-linear... As a new type of learning machine developed on the basis of statistics learning theory, support vector machine (SVM) plays an important role in knowledge discovering and knowledge updating by constructing non-linear optimal classifter. However, realizing SVM requires resolving quadratic programming under constraints of inequality, which results in calculation difficulty while learning samples gets larger. Besides, standard SVM is incapable of tackling multi-classification. To overcome the bottleneck of populating SVM, with training algorithm presented, the problem of quadratic programming is converted into that of resolving a linear system of equations composed of a group of equation constraints by adopting the least square SVM(LS-SVM) and introducing a modifying variable which can change inequality constraints into equation constraints, which simplifies the calculation. With regard to multi-classification, an LS-SVM applicable in multi-dassiftcation is deduced. Finally, efficiency of the algorithm is checked by using universal Circle in square and twospirals to measure the performance of the classifier. 展开更多
关键词 control theory control engineering artificial intelligence machine learning support vector machine.
在线阅读 下载PDF
Rock burst prediction based on genetic algorithms and extreme learning machine 被引量:25
16
作者 李天正 李永鑫 杨小礼 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2105-2113,共9页
Rock burst is a kind of geological disaster in rock excavation of high stress areas.To evaluate intensity of rock burst,the maximum shear stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic... Rock burst is a kind of geological disaster in rock excavation of high stress areas.To evaluate intensity of rock burst,the maximum shear stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic energy index were selected as input factors,and burst pit depth as output factor.The rock burst prediction model was proposed according to the genetic algorithms and extreme learning machine.The effect of structural surface was taken into consideration.Based on the engineering examples of tunnels,the observed and collected data were divided into the training set,validation set and prediction set.The training set and validation set were used to train and optimize the model.Parameter optimization results are presented.The hidden layer node was450,and the fitness of the predictions was 0.0197 under the optimal combination of the input weight and offset vector.Then,the optimized model is tested with the prediction set.Results show that the proposed model is effective.The maximum relative error is4.71%,and the average relative error is 3.20%,which proves that the model has practical value in the relative engineering. 展开更多
关键词 extreme learning machine feed forward neural network rock burst prediction rock excavation
在线阅读 下载PDF
Fault detection in flotation processes based on deep learning and support vector machine 被引量:18
17
作者 LI Zhong-mei GUI Wei-hua ZHU Jian-yong 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2504-2515,共12页
Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have... Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have concentrated on extracting a specific froth feature for segmentation,like color,shape,size and texture,always leading to undesirable accuracy and efficiency since the same segmentation algorithm could not be applied to every case.In this work,a new integrated method based on convolution neural network(CNN)combined with transfer learning approach and support vector machine(SVM)is proposed to automatically recognize the flotation condition.To be more specific,CNN function as a trainable feature extractor to process the froth images and SVM is used as a recognizer to implement fault detection.As compared with the existed recognition methods,it turns out that the CNN-SVM model can automatically retrieve features from the raw froth images and perform fault detection with high accuracy.Hence,a CNN-SVM based,real-time flotation monitoring system is proposed for application in an antimony flotation plant in China. 展开更多
关键词 flotation processes convolutional neural network support vector machine froth images fault detection
在线阅读 下载PDF
Decision tree support vector machine based on genetic algorithm for multi-class classification 被引量:17
18
作者 Huanhuan Chen Qiang Wang Yi Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期322-326,共5页
To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of... To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods. 展开更多
关键词 support vector machine (SVM) decision tree GENETICALGORITHM classification.
在线阅读 下载PDF
Motion control of thrust system for shield tunneling machine 被引量:9
19
作者 杨华勇 施虎 龚国芳 《Journal of Central South University》 SCIE EI CAS 2010年第3期537-543,共7页
The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics m... The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics modeling of multi-cylinder thrust system and synchronous control design were accomplished. The simulation of the synchronization motion control system was completed in AMESim and Matlab/Simulink software environments. The experiment was conducted by means of master/slave PID with dead band compensating flow and conventional PID regulating pressure. The experimental results show that the proposed thrust hydraulic system and its control strategy can meet the requirements of tunneling in motion and posture control for the shield machine, keeping the non-synchronous error within ±3 mm. 展开更多
关键词 shield machine thrust system synchronous motion CO-SIMULATION PID control
在线阅读 下载PDF
Identification on rock and soil parameters for vibration drilling rock in metal mine based on fuzzy least square support vector machine 被引量:11
20
作者 左红艳 罗周全 +1 位作者 管佳林 王益伟 《Journal of Central South University》 SCIE EI CAS 2014年第3期1085-1090,共6页
A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibratio... A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibration drilling based on the fuzzy least squares(FLS)-support vector machine(SVM) was developed, in which the fuzzy membership function was set by using linear distance, and its parameters, such as penalty factor and kernel parameter, were optimized by using adaptive genetic algorithm. And FLS-SVM identification on rock and soil parameters for vibration drilling was made by changing the input/output data from single freedom degree model of drilling bit-rock. The results of identification simulation and resonance column experiment show that relative error of natural frequency for some hard sand from identification simulation and resonance column experiment is 1.1% and the identification precision based on the fuzzy least squares-support vector machine is high. 展开更多
关键词 rock and soil fuzzy theory vibration excavation least squares-support vector machine IDENTIFICATION
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部