针对工业场景下经典迭代最近点(iterative closest point,ICP)算法在点云位姿估计中初始位姿敏感度高、迭代时间长的问题,提出一种基于RGB图像的快速点云配准方法。分别采集RGB图像和点云数据,使用ORB(oriented FAST and rotated BRIEF...针对工业场景下经典迭代最近点(iterative closest point,ICP)算法在点云位姿估计中初始位姿敏感度高、迭代时间长的问题,提出一种基于RGB图像的快速点云配准方法。分别采集RGB图像和点云数据,使用ORB(oriented FAST and rotated BRIEF)算法提取RGB图像特征点,利用Brute-Force算法进行初始匹配,采用随机采样一致性算法优化匹配,得到单应矩阵和旋转平移矩阵,求解汽车零配件初始位姿。进一步采用主成分分析法和双向KD树近邻搜索算法对预处理后的点云数据进行精确配准。实验结果表明,所提算法相较ICP算法,在配准速度和精度上分别提高了87.2%和5.0%,相对于FR-ICP(fast and robust iterative closest point)算法,在配准精度相当的情况下,配准速度提高了55%。展开更多
针对高光谱数据波段多,地物标签获取代价高,带标记的样本数量少,分类过程中容易引起Hudges现象。本文提出一种基于改进的局部全局一致性(learning with local and global consistency,LLGC)算法的半监督分类方法。通过边缘采样法(margin...针对高光谱数据波段多,地物标签获取代价高,带标记的样本数量少,分类过程中容易引起Hudges现象。本文提出一种基于改进的局部全局一致性(learning with local and global consistency,LLGC)算法的半监督分类方法。通过边缘采样法(margin sampling,MS)选取最富含信息量的无标签样本,加入到训练集来扩充训练样本;用KNN算法计算相似度进一步优选无标签样本,去除噪声点和存在的野值点;使用改进的局部全局一致性算法对无标签样本集进行分类标记,得到各类别的分类结果。实验结果表明,本文方法在充分利用无标签样本的情况下,有效地提高了带有少量标签样本的高光谱图像的分类精度。展开更多
文摘针对工业场景下经典迭代最近点(iterative closest point,ICP)算法在点云位姿估计中初始位姿敏感度高、迭代时间长的问题,提出一种基于RGB图像的快速点云配准方法。分别采集RGB图像和点云数据,使用ORB(oriented FAST and rotated BRIEF)算法提取RGB图像特征点,利用Brute-Force算法进行初始匹配,采用随机采样一致性算法优化匹配,得到单应矩阵和旋转平移矩阵,求解汽车零配件初始位姿。进一步采用主成分分析法和双向KD树近邻搜索算法对预处理后的点云数据进行精确配准。实验结果表明,所提算法相较ICP算法,在配准速度和精度上分别提高了87.2%和5.0%,相对于FR-ICP(fast and robust iterative closest point)算法,在配准精度相当的情况下,配准速度提高了55%。
文摘针对高光谱数据波段多,地物标签获取代价高,带标记的样本数量少,分类过程中容易引起Hudges现象。本文提出一种基于改进的局部全局一致性(learning with local and global consistency,LLGC)算法的半监督分类方法。通过边缘采样法(margin sampling,MS)选取最富含信息量的无标签样本,加入到训练集来扩充训练样本;用KNN算法计算相似度进一步优选无标签样本,去除噪声点和存在的野值点;使用改进的局部全局一致性算法对无标签样本集进行分类标记,得到各类别的分类结果。实验结果表明,本文方法在充分利用无标签样本的情况下,有效地提高了带有少量标签样本的高光谱图像的分类精度。