期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research on the unified robust Gaussian filters based on M-estimation
1
作者 ZUO Yunlong LYU Xu ZHANG Xiaofeng 《Journal of Systems Engineering and Electronics》 2025年第5期1161-1168,共8页
In this paper,the newly-derived maximum correntropy Kalman filter(MCKF)is re-derived from the M-estimation perspective,where the MCKF can be viewed as a special case of the M-estimations and the Gaussian kernel functi... In this paper,the newly-derived maximum correntropy Kalman filter(MCKF)is re-derived from the M-estimation perspective,where the MCKF can be viewed as a special case of the M-estimations and the Gaussian kernel function is a special case of many robust cost functions.Based on the derivation process,a unified form for the robust Gaussian filters(RGF)based on M-estimation is proposed to suppress the outliers and non-Gaussian noise in the measurement.The RGF provides a unified form for one Gaussian filter with different cost functions and a unified form for one robust filter with different approximating methods for the involved Gaussian integrals.Simulation results show that RGF with different weighting functions and different Gaussian integral approximation methods has robust antijamming performance. 展开更多
关键词 maximum correntropy Kalman filter(MCKF) m-estimation Gaussian filter
在线阅读 下载PDF
基于自适应权值的点云三维物体重建算法研究 被引量:3
2
作者 林晓 王燕玲 +3 位作者 朱恒亮 胡甘乐 马利庄 李鲁群 《图学学报》 CSCD 北大核心 2016年第2期143-148,共6页
基于三维扫描点云数据的三维物体重建是计算机图形学中非常重要的课题,在计算机动画、医学图像处理等多方面都有应用。其中基于最小二乘问题的Levenberg-Marquart算法和基于极大似然估计的M-Estimator算法都是不错的方案。但是当点的数... 基于三维扫描点云数据的三维物体重建是计算机图形学中非常重要的课题,在计算机动画、医学图像处理等多方面都有应用。其中基于最小二乘问题的Levenberg-Marquart算法和基于极大似然估计的M-Estimator算法都是不错的方案。但是当点的数量过多过少或者点云中有噪声时,这些方案产生的结果都会有较大的误差,影响重建的效果。为了解决这两个问题,结合Levenberg-Marquart算法和M-Estimator算法,提出了一种新的算法。该算法结合Levenberg-Marquart算法较快的收敛性和M-Estimator算法的抗噪性,能很好地解决点数量较多和噪声点影响结果的问题。通过在M-Estimator的权重函数上进行改进,提出自适应的权值函数,用灵活变动和自适应的值代替原来的固定值,使算法在噪声等级较高时也能表现良好。最后将算法应用在球体和圆柱上,并和最新的研究成果进行对比,数据说明算法无论是在点云数量较多还是在噪声等级较高的情况下都明显优于其他已知算法。 展开更多
关键词 Levenberg-Marquart m-estimATOR 自适应权值 点云 重建
在线阅读 下载PDF
Data driven particle size estimation of hematite grinding process using stochastic configuration network with robust technique 被引量:7
3
作者 DAI Wei LI De-peng +1 位作者 CHEN Qi-xin CHAI Tian-you 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期43-62,共20页
As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configu... As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configuration network(SCN)with robust technique,namely,robust SCN(RSCN).Firstly,this paper proves the universal approximation property of RSCN with weighted least squares technique.Secondly,three robust algorithms are presented by employing M-estimation with Huber loss function,M-estimation with interquartile range(IQR)and nonparametric kernel density estimation(NKDE)function respectively to set the penalty weight.Comparison experiments are first carried out based on the UCI standard data sets to verify the effectiveness of these methods,and then the data-driven PS model based on the robust algorithms are established and verified.Experimental results show that the RSCN has an excellent performance for the PS estimation. 展开更多
关键词 hematite grinding process particle size stochastic configuration network robust technique m-estimation nonparametric kernel density estimation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部