In this paper,the newly-derived maximum correntropy Kalman filter(MCKF)is re-derived from the M-estimation perspective,where the MCKF can be viewed as a special case of the M-estimations and the Gaussian kernel functi...In this paper,the newly-derived maximum correntropy Kalman filter(MCKF)is re-derived from the M-estimation perspective,where the MCKF can be viewed as a special case of the M-estimations and the Gaussian kernel function is a special case of many robust cost functions.Based on the derivation process,a unified form for the robust Gaussian filters(RGF)based on M-estimation is proposed to suppress the outliers and non-Gaussian noise in the measurement.The RGF provides a unified form for one Gaussian filter with different cost functions and a unified form for one robust filter with different approximating methods for the involved Gaussian integrals.Simulation results show that RGF with different weighting functions and different Gaussian integral approximation methods has robust antijamming performance.展开更多
As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configu...As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configuration network(SCN)with robust technique,namely,robust SCN(RSCN).Firstly,this paper proves the universal approximation property of RSCN with weighted least squares technique.Secondly,three robust algorithms are presented by employing M-estimation with Huber loss function,M-estimation with interquartile range(IQR)and nonparametric kernel density estimation(NKDE)function respectively to set the penalty weight.Comparison experiments are first carried out based on the UCI standard data sets to verify the effectiveness of these methods,and then the data-driven PS model based on the robust algorithms are established and verified.Experimental results show that the RSCN has an excellent performance for the PS estimation.展开更多
基金supported by the Basic Science Center Program of the National Natural Science Foundation of China(62388101)the National Natural Science Foundation of China(61873275).
文摘In this paper,the newly-derived maximum correntropy Kalman filter(MCKF)is re-derived from the M-estimation perspective,where the MCKF can be viewed as a special case of the M-estimations and the Gaussian kernel function is a special case of many robust cost functions.Based on the derivation process,a unified form for the robust Gaussian filters(RGF)based on M-estimation is proposed to suppress the outliers and non-Gaussian noise in the measurement.The RGF provides a unified form for one Gaussian filter with different cost functions and a unified form for one robust filter with different approximating methods for the involved Gaussian integrals.Simulation results show that RGF with different weighting functions and different Gaussian integral approximation methods has robust antijamming performance.
基金Projects(61603393,61741318)supported in part by the National Natural Science Foundation of ChinaProject(BK20160275)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(2015M581885)supported by the Postdoctoral Science Foundation of ChinaProject(PAL-N201706)supported by the Open Project Foundation of State Key Laboratory of Synthetical Automation for Process Industries of Northeastern University,China
文摘As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configuration network(SCN)with robust technique,namely,robust SCN(RSCN).Firstly,this paper proves the universal approximation property of RSCN with weighted least squares technique.Secondly,three robust algorithms are presented by employing M-estimation with Huber loss function,M-estimation with interquartile range(IQR)and nonparametric kernel density estimation(NKDE)function respectively to set the penalty weight.Comparison experiments are first carried out based on the UCI standard data sets to verify the effectiveness of these methods,and then the data-driven PS model based on the robust algorithms are established and verified.Experimental results show that the RSCN has an excellent performance for the PS estimation.