Massive MIMO is a promising technology to improve spectral efficiency, cell coverage, and system capacity for 5G. However, these benefits take place at great cost of computational complexity, especially in systems wit...Massive MIMO is a promising technology to improve spectral efficiency, cell coverage, and system capacity for 5G. However, these benefits take place at great cost of computational complexity, especially in systems with hundreds of antennas at the base station. This paper aims to address the minimum mean square error(MMSE) detection in uplink massive MIMO systems utilizing the symmetric complex bi-conjugate gradients(SCBiCG) and the Lanczos method. Both the proposed methods can avoid the large scale matrix inversion which is necessary for MMSE, thus, reducing the computational complexity by an order of magnitude with respect to the number of user equipment. To enable the proposed methods for soft-output detection, we also derive an approximating calculation scheme for the log-likelihood ratios(LLRs), which further reduces the complexity. We compare the proposed methods with existing exact and approximate detection methods. Simulation results demonstrate that the proposed methods can achieve near-optimal performance of MMSE detection with relatively low computational complexity.展开更多
Cascade index modulation(CIM) is a recently proposed improvement of orthogonal frequency division multiplexing with index modulation(OFDM-IM) and achieves better error performance.In CIM, at least two different IM ope...Cascade index modulation(CIM) is a recently proposed improvement of orthogonal frequency division multiplexing with index modulation(OFDM-IM) and achieves better error performance.In CIM, at least two different IM operations construct a super IM operation or achieve new functionality. First, we propose a OFDM with generalized CIM(OFDM-GCIM) scheme to achieve a joint IM of subcarrier selection and multiple-mode(MM)permutations by using a multilevel digital algorithm.Then, two schemes, called double CIM(D-CIM) and multiple-layer CIM(M-CIM), are proposed for secure communication, which combine new IM operation for disrupting the original order of bits and symbols with conventional OFDM-IM, to protect the legitimate users from eavesdropping in the wireless communications. A subcarrier-wise maximum likelihood(ML) detector and a low complexity log-likelihood ratio(LLR) detector are proposed for the legitimate users. A tight upper bound on the bit error rate(BER) of the proposed OFDM-GCIM, D-CIM and MCIM at the legitimate users are derived in closed form by employing the ML criteria detection. Computer simulations and numerical results show that the proposed OFDM-GCIM achieves superior error performance than OFDM-IM, and the error performance at the eavesdroppers demonstrates the security of D-CIM and M-CIM.展开更多
Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmissio...Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.展开更多
For multi-user cooperative Distributed MIMO (D-MIMO) systems, a low-complexity Remote Radio Unit (RRU) selection and adaptive bit partition algorithm is proposed to maximize the transmission Signal-to-Interference-Noi...For multi-user cooperative Distributed MIMO (D-MIMO) systems, a low-complexity Remote Radio Unit (RRU) selection and adaptive bit partition algorithm is proposed to maximize the transmission Signal-to-Interference-Noise Ratio (SINR). Considering limited feedback, each user can adaptively select an RRU cluster to maintain the best communication quality. Under this condition, only one codebook is utilized for quantizing the Channel State Information (CSI) with variable dimensions, which effectively reduces the codebook storage amount. Furthermore, we propose an adaptive bit partition algorithm, which separately allocates bits to quantize the desired channels and interference channels. The optimal solution is achieved through an optimization theory to minimize the effect of inter-cell interference. Simulation results show that the proposed algorithm substantially improves the performance compared to other non-adaptive schemes.展开更多
基金supported by Chinas 863 Project NO.2015AA01A706the National S&T Major Project NO.2014ZX03001011+1 种基金the Science and Technology Program of Beijing NO.D151100000115003the Scientific and Technological Cooperation Projects NO.2015DFT10160B
文摘Massive MIMO is a promising technology to improve spectral efficiency, cell coverage, and system capacity for 5G. However, these benefits take place at great cost of computational complexity, especially in systems with hundreds of antennas at the base station. This paper aims to address the minimum mean square error(MMSE) detection in uplink massive MIMO systems utilizing the symmetric complex bi-conjugate gradients(SCBiCG) and the Lanczos method. Both the proposed methods can avoid the large scale matrix inversion which is necessary for MMSE, thus, reducing the computational complexity by an order of magnitude with respect to the number of user equipment. To enable the proposed methods for soft-output detection, we also derive an approximating calculation scheme for the log-likelihood ratios(LLRs), which further reduces the complexity. We compare the proposed methods with existing exact and approximate detection methods. Simulation results demonstrate that the proposed methods can achieve near-optimal performance of MMSE detection with relatively low computational complexity.
基金supported by National Natural Science Foundation of China (No. 61971149, 62071504, 62271208)in part by the Special Projects in Key Fields for General Universities of Guangdong Province (No. 2020ZDZX3025, 2021ZDZX056)+1 种基金in part by the Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515011657)in part by the Featured Innovation Projects of Guangdong Province of China (No. 2021KTSCX049)。
文摘Cascade index modulation(CIM) is a recently proposed improvement of orthogonal frequency division multiplexing with index modulation(OFDM-IM) and achieves better error performance.In CIM, at least two different IM operations construct a super IM operation or achieve new functionality. First, we propose a OFDM with generalized CIM(OFDM-GCIM) scheme to achieve a joint IM of subcarrier selection and multiple-mode(MM)permutations by using a multilevel digital algorithm.Then, two schemes, called double CIM(D-CIM) and multiple-layer CIM(M-CIM), are proposed for secure communication, which combine new IM operation for disrupting the original order of bits and symbols with conventional OFDM-IM, to protect the legitimate users from eavesdropping in the wireless communications. A subcarrier-wise maximum likelihood(ML) detector and a low complexity log-likelihood ratio(LLR) detector are proposed for the legitimate users. A tight upper bound on the bit error rate(BER) of the proposed OFDM-GCIM, D-CIM and MCIM at the legitimate users are derived in closed form by employing the ML criteria detection. Computer simulations and numerical results show that the proposed OFDM-GCIM achieves superior error performance than OFDM-IM, and the error performance at the eavesdroppers demonstrates the security of D-CIM and M-CIM.
基金supported by the 2011 China Aerospace Science and Technology Foundationthe Certain Ministry Foundation under Grant No.20212HK03010
文摘Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.
基金supported partially by Important National Science&Technology Specific Projects under Grant No.2010ZX03005-001-0National High Technology Research and Development of China(863 Program)under Grant No.2006AA01Z272New Century Excellent Talents in University (NCET) under Grant No.NCET-11-0593
文摘For multi-user cooperative Distributed MIMO (D-MIMO) systems, a low-complexity Remote Radio Unit (RRU) selection and adaptive bit partition algorithm is proposed to maximize the transmission Signal-to-Interference-Noise Ratio (SINR). Considering limited feedback, each user can adaptively select an RRU cluster to maintain the best communication quality. Under this condition, only one codebook is utilized for quantizing the Channel State Information (CSI) with variable dimensions, which effectively reduces the codebook storage amount. Furthermore, we propose an adaptive bit partition algorithm, which separately allocates bits to quantize the desired channels and interference channels. The optimal solution is achieved through an optimization theory to minimize the effect of inter-cell interference. Simulation results show that the proposed algorithm substantially improves the performance compared to other non-adaptive schemes.