期刊文献+
共找到6,316篇文章
< 1 2 250 >
每页显示 20 50 100
A Parallel Discrete Event Simulation Engine for the Low-Earth-Orbit Satellite Constellation Networks
1
作者 Su Hailong Liu Yaoqi +3 位作者 Zhou Yiqing Shi Jinglin Li Hongguang Qian Manli 《China Communications》 SCIE CSCD 2024年第8期264-275,共12页
Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol develo... Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol development and application testing of LEO-SCN are challenging to carry out in a natural environment.Simulation platforms are a more effective means of technology demonstration.Currently available simulators have a single function and limited simulation scale.There needs to be a simulator for full-featured simulation.In this paper,we apply the parallel discrete-event simulation technique to the simulation of LEO-SCN to support large-scale complex system simulation at the packet level.To solve the problem that single-process programs cannot cope with complex simulations containing numerous entities,we propose a parallel mechanism and algorithms LP-NM and LP-YAWNS for synchronization.In the experiment,we use ns-3 to verify the acceleration ratio and efficiency of the above algorithms.The results show that our proposed mechanism can provide parallel simulation engine support for the LEO-SCN. 展开更多
关键词 CONSTELLATION low earth orbit satellite ns-3 null-message parallel discrete-event simulation
在线阅读 下载PDF
人工智能助力:Orbital Materials公司加速清洁技术材料的开发
2
作者 燕春晖(摘译) 《石油炼制与化工》 北大核心 2025年第2期130-130,共1页
随着全球对环境保护意识的增强,探寻能够有效减少碳排放并促进可持续发展的新材料成为了科研领域的热点。一家成立于2022年的初创公司Orbital Materials,正利用人工智能(AI)技术在这一领域取得突破。
关键词 初创公司 清洁技术 orbitAL 环境保护意识 科研领域
在线阅读 下载PDF
打破数据孤岛,数字化赋能绿色转型——访OrbitMI首席执行官Ali Riaz
3
作者 薛龙玉 《中国船检》 2025年第2期26-28,共3页
近年来,航运业面临复杂多变的运营环境、日趋严格的法规要求以及不断增长的转型压力,如何借助数字化手段破局已成为关乎行业可持续发展的重要命题,布局数字化转型也成为许多航运企业适应行业变局的前瞻举措。几年前,瑞典油轮运营商Stena... 近年来,航运业面临复杂多变的运营环境、日趋严格的法规要求以及不断增长的转型压力,如何借助数字化手段破局已成为关乎行业可持续发展的重要命题,布局数字化转型也成为许多航运企业适应行业变局的前瞻举措。几年前,瑞典油轮运营商Stena Bulk投资了一系列数字化转型倡议,其中一个项目孵化出了运营平台“Orbit”,并很快与该公司的日常工作实现了无缝融合。2019年OrbitMI平台正式从Stena Bulk分拆出来,经过短短几年迅速发展,一跃成为海事软件领域的领航者。OrbitMI专注于解锁海事数据的潜藏价值,打造了集运营、财务及环境数据于一体的综合平台,并通过与业界重要相关方合作,不断巩固竞争优势。 展开更多
关键词 数字化转型 数据孤岛 绿色转型 综合平台 运营平台 orbit 环境数据 领航者
在线阅读 下载PDF
OrbitMI的数字化解决方案
4
作者 王思佳 《中国船检》 2025年第1期56-60,共5页
近日,劳氏日报揭晓了2024年度十大科技领袖榜单,OrbitMI公司的首席执行官Ali Riaz以其卓越的领导力成功上榜,位列第6。OrbitMI的前身是被誉为极具创新精神的瑞典油轮公司Stena Bulk的一个部门。Stena Bulk的全球开发团队与海事和能源专... 近日,劳氏日报揭晓了2024年度十大科技领袖榜单,OrbitMI公司的首席执行官Ali Riaz以其卓越的领导力成功上榜,位列第6。OrbitMI的前身是被誉为极具创新精神的瑞典油轮公司Stena Bulk的一个部门。Stena Bulk的全球开发团队与海事和能源专家、麻省理工学院的工程师合作,采用创新方法创建了基于实际使用案例的解决方案,建立了名为Orbit的运营平台,旨在提高效率,使公司更加灵活,增加与客户之间的透明度,并加强市场信息收集。很快,Orbit便无缝融入了Stena Bluk的日常工作。 展开更多
关键词 首席执行官 能源专家 麻省理工学院 运营平台 orbit MI 开发团队 领导力
在线阅读 下载PDF
Theory for Charge Density Wave and Orbital-Flux State in Antiferromagnetic Kagome Metal FeGe 被引量:1
5
作者 马海洋 殷嘉鑫 +1 位作者 M.Zahid Hasan 刘健鹏 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期90-104,共15页
We theoretically study the charge order and orbital magnetic properties of a new type of antiferromagnetic kagome metal FeGe.Based on first-principles density functional theory calculations,we study the electronic str... We theoretically study the charge order and orbital magnetic properties of a new type of antiferromagnetic kagome metal FeGe.Based on first-principles density functional theory calculations,we study the electronic structures,Fermi-surface quantum fluctuations,as well as phonon properties of the antiferromagnetic kagome metal FeGe.It is found that charge density wave emerges in such a system due to a subtle cooperation between electron-electron interactions and electron–phonon couplings,which gives rise to an unusual scenario of interaction-triggered phonon instabilities,and eventually yields a charge density wave(CDW)state.We further show that,in the CDW phase,the ground-state current density distribution exhibits an intriguing star-of-David pattern,leading to flux density modulation.The orbital fluxes(or current loops)in this system emerge as a result of the subtle interplay between magnetism,lattice geometries,charge order,and spin-orbit coupling(SOC),which can be described by a simple,yet universal,tight-binding theory including a Kane-Mele-type SOC term and a magnetic exchange interaction.We further study the origin of the peculiar step-edge states in FeGe,which sheds light on the topological properties and correlation effects in this new type of kagome antiferromagnetic material. 展开更多
关键词 interaction PHONON orbitAL
在线阅读 下载PDF
Manipulating d-d orbital hybridization induced by Mo-doped Co_(9)S_(8) nanorod arrays for high-efficiency water electrolysis 被引量:1
6
作者 Xue Zhou Jing Li +8 位作者 Guangyao Zhou Weiran Huang Yucan Zhang Jun Yang Huan Pang Mingyi Zhang Dongmei Sun Yawen Tang Lin Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期592-600,I0015,共10页
Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept ... Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept to construct Mo-doped Co_(9)S_(8) nanorod arrays aligned on carbon cloth(CC)substrate(abbreviated as Mo-Co_(9)S_(8)@CC hereafter)as a high-efficiency bifunctional electrocatalyst toward water electrolysis.It has experimentally and theoretically validated that the 4d-3d orbital coupling between Mo dopant and Co site can effectively optimize the H_(2)O activation energy and lower H^(*)adsorption energy barrier,thereby leading to enhanced hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)activities.Thanks to the unique electronic and geometrical advantages,the optimized Mo-Co_(9)S_(8)@CC with appropriate Mo content exhibits outstanding bifunctional performance in alkaline solution,with the overpotentials of 75 and 234 mV for the delivery of a current density of 10 mA cm^(-2),small Tafel slopes of 53.8 and 39.9 mV dec~(-1)and long-term stabilities for at least 32 and 30 h for HER and OER,respectively.More impressively,a water splitting electrolylzer assembled by the self-supported Mo-Co_(9)S_(8)@CC electrode requires a low cell voltage of 1.53 V at 10 mA cm^(-2)and shows excellent stability and splendid reversibility,demonstrating a huge potential for affordable and scalable electrochemical H_(2) production.The innovational orbital hybridization strategy for electronic regulation herein provides an inspirable avenue for developing progressive electrocatalysts toward new energy systems. 展开更多
关键词 d-d orbital hybridization Transition metal sulfides Nanorods arrays Water electrolysis
在线阅读 下载PDF
High-Resolution Recognition of Orbital Angular Momentum Modes in Asymmetric Bessel Beams Assisted by Deep Learning
7
作者 徐鹏飞 童鑫 +2 位作者 曾子帅 刘书悉 赵道木 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第7期27-35,共9页
Fractional orbital angular momentum(OAM) vortex beams present a promising way to increase the data throughput in optical communication systems. Nevertheless, high-precision recognition of fractional OAM with different... Fractional orbital angular momentum(OAM) vortex beams present a promising way to increase the data throughput in optical communication systems. Nevertheless, high-precision recognition of fractional OAM with different propagation distances remains a significant challenge. We develop a convolutional neural network(CNN)method to realize high-resolution recognition of OAM modalities, leveraging asymmetric Bessel beams imbued with fractional OAM. Experimental results prove that our method achieves a recognition accuracy exceeding 94.3% for OAM modes, with an interval of 0.05, and maintains a high recognition accuracy above 92% across varying propagation distances. The findings of our research will be poised to significantly contribute to the deployment of fractional OAM beams within the domain of optical communications. 展开更多
关键词 BESSEL FRACTIONAL orbitAL
在线阅读 下载PDF
Orbital-Ordering Driven Simultaneous Tunability of Magnetism and Electric Polarization in Strained Monolayer VCl_(3)
8
作者 郭的坪 王聪 +4 位作者 王侣锦 陆赟豪 吴骅 张妍宁 季威 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期126-131,共6页
Two-dimensional(2D)van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit,indicating a considerable potential to advance spintronic applications.Theoretical pr... Two-dimensional(2D)van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit,indicating a considerable potential to advance spintronic applications.Theoretical predictions thus far have not ascertained whether monolayer VCl_(3) is a ferromagnetic(FM)or anti-FM monolayer;this also remains to be experimentally verified.We theoretically investigate the influence of potential factors,including C_(3) symmetry breaking,orbital ordering,epitaxial strain,and charge doping,on the magnetic ground state.Utilizing first-principles calculations,we predict a collinear type-Ⅲ FM ground state in monolayer VCl_(3) with a broken C_(3) symmetry,wherein only the former two of three t_(2g)orbitals(a_(1g),e_(g2)^(π)and e_(g1)^(π))are occupied.The atomic layer thickness and bond angles of monolayer VCl_(3) undergo abrupt changes driven by an orbital ordering switch,resulting in concomitant structural and magnetic phase transitions.Introducing doping to the underlying Cl atoms of monolayer VCl_(3) without C_(3) symmetry simultaneously induces in-and out-of-plane polarizations.This can achieve a multiferroic phase transition if combined with the discovered adjustments of magnetic ground state and polarization magnitude under strain.The establishment of an orbital-ordering driven regulatory mechanism can facilitate deeper exploration and comprehension of magnetic properties of strongly correlated systems in monolayer VCl_(3). 展开更多
关键词 MONOLAYER symmetry orbitAL
在线阅读 下载PDF
Optical image watermarking based on orbital angular momentum holography
9
作者 Jialong Zhu Jiaying Ji +1 位作者 Le Wang Shengmei Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期269-277,共9页
We propose an optical image watermarking scheme based on orbital angular momentum(OAM)holography.Multiple topological charges(TCs,l)of OAM,as multiple cryptographic sub-keys,are embedded into the host image along with... We propose an optical image watermarking scheme based on orbital angular momentum(OAM)holography.Multiple topological charges(TCs,l)of OAM,as multiple cryptographic sub-keys,are embedded into the host image along with the watermark information.Moreover,the Arnold transformation is employed to further enhance the security and the scrambling time(m)is also served as another cryptographic key.The watermark image is embedded into the host image by using the discrete wavelet transformation(DWT)and singular value decomposition(SVD)methods.Importantly,the interference image is utilized to further enhance security.The imperceptibility of our proposed method is analyzed by using the peak signal-to-noise ratio(PSNR)and the histogram of the watermarked host image.To demonstrate robustness,a series of attack tests,including Gaussian noise,Poisson noise,salt-and-pepper noise,JPEG compression,Gaussian lowpass filtering,cropping,and rotation,are conducted.The experimental results show that our proposed method has advanced security,imperceptibility,and robustness,making it a promising option for optical image watermarking applications. 展开更多
关键词 optical image watermarking orbital angular momentum HOLOGRAPHY discrete wavelet transformation
在线阅读 下载PDF
Dynamic properties of the magnetic skyrmion driven by electromagnetic waves with spin angular momentum and orbital angular momentum
10
作者 Longfei Guo Bing Zha +4 位作者 Xiaoqiao Sun Songmei Ni Ruiyu Huang Lin Chen Zhikuo Tao 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期388-395,共8页
We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic(EM)waves with spin angular momentum(SAM)and orbital angular momentum(OAM)using micromagnetic simulations.First,the guiding cent... We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic(EM)waves with spin angular momentum(SAM)and orbital angular momentum(OAM)using micromagnetic simulations.First,the guiding centers of the skyrmion driven by EM waves with SAM,i.e.,left-handed and right-handed circularly polarized EM waves,present circular trajectories,while present elliptical trajectories under linear EM waves driving due to the superposition of oppositely polarized wave components.Second,the trajectories of the skyrmion driven by EM waves with OAM demonstrate similar behavior to that driven by linearly polarized EM waves.Because the wave vector intensity varies with the phase for both linearly polarized EM waves and EM waves with OAM,the angular momentum is transferred to the skyrmion non-uniformly,while the angular momentum is transferred to the skyrmion uniformly for left-handed and right-handed circularly polarized EM driving.Third,the dynamic properties of the skyrmion driven by EM waves with both SAM and OAM are investigated.It is found that the dynamic trajectories exhibit more complex behavior due to the contributions or competition of SAM and OAM.We investigate the characteristics of intrinsic gyration modes and frequency-dependent trajectories.Our research may provide insight into the dynamic properties of skyrmion manipulated by EM waves with SAM or OAM and provide a method for controlling skyrmion in spintronic devices. 展开更多
关键词 SKYRMION spin angular momentum orbital angular momentum dynamic properties
在线阅读 下载PDF
Generation of orbital angular momentum hologram using a modified U-net
11
作者 郑志刚 韩菲菲 +1 位作者 王乐 赵生妹 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期401-407,共7页
Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the ort... Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the orthogonality of different OAM modes.In this paper,we propose a novel OAM hologram generation method based on a densely connected U-net(DCU),where the densely connected convolution blocks(DCB)replace the convolution blocks of the U-net.Importantly,the reconstruction process of the OAM hologram is integrated into DCU as its output layer,so as to eliminate the requirement to prepare training data for the OAM hologram,which is required by conventional neural networks through an iterative algorithm.The experimental and simulation results show that the OAM hologram can rapidly be generated with the well-trained DCU,and the reconstructed image's quality from the generated OAM hologram is significantly improved in comparison with those from the Gerchberg-Saxton generation method,the Gerchberg-Saxton based generation method and the U-net method.In addition,a 10-bit OAM multiplexing hologram scheme is numerically demonstrated to have a high capacity with OAM hologram. 展开更多
关键词 orbital angular momentum(OAM) HOLOGRAPHY OAM holography deep learning
在线阅读 下载PDF
Bessel–Gaussian beam-based orbital angular momentum holography
12
作者 季佳滢 郑志刚 +3 位作者 朱家龙 王乐 王新光 赵生妹 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期407-413,共7页
Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstruct... Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstructed from an OAM-multiplexing hologram. However, the traditional design of an OAM hologram is constrained by the helical mode index of the selected OAM mode, for a larger helical mode index OAM mode has a bigger sampling distance, and the crosstalk is produced for different sampling distances for different OAM modes. In this paper, we present the design of the OAM hologram based on a Bessel–Gaussian beam, which is non-diffractive and has a self-healing property during its propagation. The Fourier transform of the Bessel–Gaussian beam is the perfect vortex mode that has the fixed ring radius for different OAM modes. The results of simulation and experiment have demonstrated the feasibility of the generation of the OAM hologram with the Bessel–Gaussian beam. The quality of the reconstructed holographic image is increased, and the security is enhanced. Additionally, the anti-interference property is improved owing to its self-healing property of the Bessel-OAM holography. 展开更多
关键词 orbital angular momentum HOLOGRAPHY Bessel–Gaussian beam OAM-multiplexing hologram
在线阅读 下载PDF
Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin–orbit coupling
13
作者 王莹 李丹 +6 位作者 孙新英 张惠晴 马晗 李慧欣 任俊峰 王传奎 胡贵超 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期519-527,共9页
With an extended Su–Schrieffer–Heeger model and Green's function method, the spin–orbit coupling(SOC) effects on spin admixture of electronic states and quantum transport in organic devices are investigated. Th... With an extended Su–Schrieffer–Heeger model and Green's function method, the spin–orbit coupling(SOC) effects on spin admixture of electronic states and quantum transport in organic devices are investigated. The role of lattice distortion induced by the strong electron–lattice interaction in organics is clarified in contrast with a uniform chain. The results demonstrate an enhanced SOC effect on the spin admixture of frontier eigenstates by the lattice distortion at a larger SOC,which is explained by the perturbation theory. The quantum transport under the SOC is calculated for both nonmagnetic and ferromagnetic electrodes. A more notable SOC effect on total transmission and current is observed for ferromagnetic electrodes, where spin filtering induced by spin-flipped transmission and suppression of magnetoresistance are obtained.Unlike the spin admixture, a stronger SOC effect on transmission exists for the uniform chain rather than the organic lattices with distortion. The reason is attributed to the modified spin-polarized conducting states in the electrodes by lattice configuration, and hence the spin-flip transmission, instead of the spin admixture of eigenstates. This work is helpful to understand the SOC effect in organic spin valves in the presence of lattice distortion. 展开更多
关键词 organic spintronics spin–orbit coupling spin admixture quantum transport
在线阅读 下载PDF
d-d Orbital coupling induced by crystal-phase engineering assists acetonitrile electroreduction to ethylamine
14
作者 Honggang Huang Yao Chen +7 位作者 Hui Fu Cun Chen Hanjun Li Zhe Zhang Feili Lai Shuxing Bai Nan Zhang Tianxi Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期216-225,I0006,共11页
The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in ele... The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in electrochemical acetonitrile reduction reaction(ARR)to date.Herein,we successfully realize the structural transformation of Pd Cu metallic aerogels(MAs)from face-centered cubic(FCC)to body-centered cubic(BCC)through annealing treatment.Specifically,the BCC Pd Cu MAs exhibit excellent ARR performance with high ethylamine selectivity of 90.91%,Faradaic efficiency of 88.60%,yield rate of 316.0 mmol h^(-1)g^(-1)_(Pd+Cu)and long-term stability for consecutive electrolysis within 20 h at-0.55 V vs.reversible hydrogen electrode,outperforming than those of FCC Pd Cu MAs.Under the membrane electrode assembly system,BCC Pd Cu MAs also demonstrate excellent ethylamine yield rate of 389.5 mmol h^(-1)g^(-1)_(Pd+Cu).Density functional theory calculation reveals that the d-d orbital coupling in BCC Pd Cu MAs results in an evident correlation effect for the interaction of Pd and Cu sites,which boosts up the Cu sites electronic activities to enhance ARR performance.Our work opens a new route to develop efficient ARR electrocatalysts from the perspective of crystalline structure transformation. 展开更多
关键词 d-d orbital coupling Crystal-phase engineering Metallic aerogels Acetonitrile electroreduction reaction ETHYLAMINE
在线阅读 下载PDF
Ab initio nonadiabatic molecular dynamics study on spin–orbit coupling induced spin dynamics in ferromagnetic metals
15
作者 朱万松 郑镇法 +1 位作者 郑奇靖 赵瑾 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期156-163,共8页
Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics... Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics simulation,we have studied the spin dynamics induced by spin–orbit coupling(SOC)in Co and Fe using both spin-diabatic and spin-adiabatic representations.In Co system,it is found that the Fermi surface(E_(F))is predominantly contributed by the spin-minority states.The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the E_(F),and the spin-minority electrons tend to relax to the EFwith the same spin through the electron–phonon coupling(EPC).The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within100 fs.By contrast,in Fe system,the E_(F) is dominated by the spin-majority states.In this case,the SOC induced spin flip occurs for the photo-excited spin-minority electrons,which leads to a magnetization enhancement.If we move the E_(F) of Fe to higher energy by 0.6eV,the E_(F) will be contributed by the spin-minority states and the demagnetization will be observed again.This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems. 展开更多
关键词 nonadiabatic molecular dynamics spin dynamics spin–orbit coupling ferromagnetic metal
在线阅读 下载PDF
Imaging simulation and analysis of attitude jitter effect on topographic mapping for lunar orbiter stereo optical cameras
16
作者 CHEN Chen TONG Xiao-Hua +4 位作者 LIU Shi-Jie YE Zhen HUANG Chao-Wei WU Hao ZHANG Han 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第5期722-730,共9页
The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo m... The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison. 展开更多
关键词 topographic mapping lunar orbiter stereo camera attitude jitter imaging simulation digital elevation model
在线阅读 下载PDF
A guidance strategy for rendezvous and docking to the space station in the Earth-Moon NRHO orbit
17
作者 XIE Yongchun CHEN Changqing +1 位作者 LI Xiangyu LI Zhenyu 《中国空间科学技术(中英文)》 CSCD 北大核心 2024年第4期29-39,共11页
With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key techn... With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO. 展开更多
关键词 Earth-Moon space station rendezvous and docking NRHO orbit relative motion guidance strategy
在线阅读 下载PDF
Asymmetric orbital hybridization in Zn-doped antiperovskite Cu_(1-x)Zn_(x)NMn_(3)enables highly efficient electrocatalytic hydrogen production
18
作者 Yuxiang Yan Yuxin Cao +9 位作者 Zhichao Wang Ka Wang Hengdong Ren Shaoqi Zhang Yi Wang Jian Chen Yong Zhou Lizhe Liu Jun Dai Xinglong Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期304-312,I0008,共10页
Rational design of efficient and robust earth-abundant alkaline hydrogen evolution reaction(HER)catalysts is a key factor for developing energy conversion technologies.Currently,antiperovskite nitride CuNMn_(3)has gar... Rational design of efficient and robust earth-abundant alkaline hydrogen evolution reaction(HER)catalysts is a key factor for developing energy conversion technologies.Currently,antiperovskite nitride CuNMn_(3)has garnered significant interest due to its remarkable properties such as negative/zero thermal expansion and magnetocaloric effects.However,when utilized as hydrogen evolution catalysts,it encounters large challenge resulting from excessively strong/weak interactions with adsorbed H on Mn/Cu active sites,which leads to low HER activity.In this study,we introduce an asymmetric orbital hybridization strategy in Zn-doped Cu_(1-x)Zn_(x)NMn_(3)by leveraging the localization of Zn electronic states to reconfigure the electronic structures of Cu and Mn,thereby reducing the energy barrier for water dissociation and optimizing Cu and Mn active sites for hydrogen adsorption and H_(2)production.Electrochemical evaluations reveal that Cu_(0.85)Zn_(0.15)NMn_(3)with x=0.15 demonstrates exceptional electrocatalytic activity in alkaline electrolytes.A low overpotential of 52 mV at 10 mA cm^(-2)and outstanding stability over a 150-h test period are achieved,surpassing commercial Pt/C.This research offers a novel strategy for enhancing HER performance by modulating asymmetric hybridization of electron orbitals between multiple metal atoms within a material structure. 展开更多
关键词 Cu_(1-x)ZnxNMn_(3) Asymmetric orbital hybridization Hydrogen adsorption Hydrogen production
在线阅读 下载PDF
基于全球星机会信号的多普勒定位技术
19
作者 秦红磊 张宇 +1 位作者 师广婷 王丹瑶 《北京航空航天大学学报》 北大核心 2025年第2期360-367,共8页
以数量庞大的低轨非导航卫星播发的信号作为导航源可不依赖全球导航卫星系统(GNSS)提供定位、导航、授时(PNT)服务能力。对于全球星低轨通信星座播发的机会信号,针对其信噪比低且使用多种扩频码进行复合正交扩频调制的特点导致难以提取... 以数量庞大的低轨非导航卫星播发的信号作为导航源可不依赖全球导航卫星系统(GNSS)提供定位、导航、授时(PNT)服务能力。对于全球星低轨通信星座播发的机会信号,针对其信噪比低且使用多种扩频码进行复合正交扩频调制的特点导致难以提取多普勒的问题,开展基于全球星机会信号的多普勒定位技术研究。通过实测数据对全球星导频信号进行分析,针对性地提出利用平方交谐项实现全球星的导频扩频信号的解码方法,并利用解码结果通过并行码相位搜索捕获算法提取多普勒观测量,建立粗时多普勒定位数学模型并实现定位。实测验证结果表明:利用2颗全球星的实际信号能够达到精度优于100 m的水平定位性能。 展开更多
关键词 定位 机会信号 低轨卫星 全球星 多普勒 扩频通信
在线阅读 下载PDF
Enhancing ^(*)CO coverage on Sm-Cu_(2)O via 4f-3d orbital hybridization for highly efficient electrochemical CO_(2) reduction to C_(2)H_(4)
20
作者 Xiaojun Wang Lanlan Shi +11 位作者 Weikun Ren Jingxian Li Yuanming Liu Weijie Fu Shiyu Wang Shuyun Yao Yingjie Ji Kang Ji Liwen Zhang Zhiyu Yang Jiangzhou Xie Yi-Ming Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期409-416,共8页
The electrocatalytic conversion of CO_(2) into valuable chemical feedstocks using renewable electricity offers a compelling strategy for closing the carbon loop.While copper-based materials are effective in catalyzing... The electrocatalytic conversion of CO_(2) into valuable chemical feedstocks using renewable electricity offers a compelling strategy for closing the carbon loop.While copper-based materials are effective in catalyzing CO_(2) to C_(2+)products,the instability of Cu^(+)species,which tend to reduce to Cu~0 at cathodic potentials during CO_(2) reduction,poses a significant challenge.Here,we report the development of SmCu_(2)O and investigate the influence of f-d orbital hybridization on the CO_(2) reduction reaction (CO_(2)RR).Supported by density functional theory (DFT) calculations,our experimental results demonstrate that hybridization between Sm^(3+)4f and Cu^(+)3d orbitals not only improves the adsorption of *CO intermediates and increases CO coverage to stabilize Cu^(+) but also facilitates CO_(2) activation and lowers the energy barriers for CAC coupling.Notably,Sm-Cu_(2)O achieves a Faradaic efficiency for C_(2)H_(4) that is 38%higher than that of undoped Cu_(2)O.Additionally,it sustains its catalytic activity over an extended operational period exceeding 7 h,compared to merely 2 h for the undoped sample.This research highlights the potential of fd orbital hybridization in enhancing the efficacy of copper-based catalysts for CO_(2)RR,pointing towards a promising direction for the development of durable,high-performance electrocatalysts for sustainable chemical synthesis. 展开更多
关键词 Electrochemical CO_(2)reduction F-d orbital hybridization Adsorption of^(*)CO CO coverage C_(2+)products
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部