The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondor...The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.展开更多
Micro-Doppler feature extraction of unmanned aerial vehicles(UAVs)is important for their identification and classification.Noise and the motion state of the UAV are the main factors that may affect feature extraction ...Micro-Doppler feature extraction of unmanned aerial vehicles(UAVs)is important for their identification and classification.Noise and the motion state of the UAV are the main factors that may affect feature extraction and estimation precision of the micro-motion parameters.The spectrum of UAV echoes is reconstructed to strengthen the micro-motion feature and reduce the influence of the noise on the condition of low signal to noise ratio(SNR).Then considering the rotor rate variance of UAV in the complex motion state,the cepstrum method is improved to extract the rotation rate of the UAV,and the blade length can be intensively estimated.The experiment results for the simulation data and measured data show that the reconstruction of the spectrum for the UAV echoes is helpful and the relative mean square root error of the rotating speed and blade length estimated by the proposed method can be improved.However,the computation complexity is higher and the heavier computation burden is required.展开更多
To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and...To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and its corresponding characteristics, derives the probability density functions of the LFM signal and Gaussian white noise within WHT based on entropy (WHTE), dimension under different assumptions and puts forward a WHT algorithm based on entropy of slice to improve the capacity of detecting the LFM signal. Entropy of the WHT domain slice is adopted to assess the information size of polar radius or angle slice, which is converted into the weight factor to weight every slice. Double-deck weight is used to weaken the influences of noise and disturbance terms and WHTE treatment and signal detection procedure are also summarized. The rationality of the algorithm is demonstrated through theoretical analysis and formula derivation, the efficiency of the algorithm is verified by simulation comparison between WHT, fractional Fourier transform and periodic WHT, and it is highlighted that the WHTE algorithm has better detection accuracy and range of application against strong noise background.展开更多
Ubiquitous radar is a new radar system that provides continuous and uninterrupted multifunction capability within a coverage volume. Continuous coverage from close-in "pop-up" targets in clutter to long-range target...Ubiquitous radar is a new radar system that provides continuous and uninterrupted multifunction capability within a coverage volume. Continuous coverage from close-in "pop-up" targets in clutter to long-range targets impacts selection of waveform parameters. The coherent processing interval (CPI) must be long enough to achieve a certain signal-to-noise ratio (SNR) that ensures the efficiency of detection. The condition of detection in the case of low SNR is analyzed, and three different cases that would occur during integration are discussed and a method to determine the CPI is presented. The simulation results show that targets detection with SNR as low as -26 dB in the experimental system can possibly determine the CPI.展开更多
This paper proposes a desirable method to detect different kinds of low probability of intercept (LPI) radar signals, targeted at the main intra-pulse modulation method of LPI radar signals including the signals of li...This paper proposes a desirable method to detect different kinds of low probability of intercept (LPI) radar signals, targeted at the main intra-pulse modulation method of LPI radar signals including the signals of linear frequency modulation, phase code, and frequency code. Firstly, it improves the coherent integration of LPI radar signals by adding the periodicity of the ambiguity function. Then, it develops a frequency domain detection method based on fast Fourier transform (FFT) and segmented autocorrelation function to detect signals without features of linear frequency modulation by virtue of the distribution characteristics of noise signals in the frequency domain. Finally, this paper gives a verification of the performance of the method for different signal-to-noise ratios by conducting simulation experiments, and compares the method with existing ones. Additionally, this method is characterized by the straightforward calculation and high real-time performance, which is conducive to better detecting all kinds of LPI radar signals.展开更多
For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide...For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide-ranging multi-frequency radar for low angle targets is proposed. Sequential transmitting multiple pulses with different frequencies are first applied to decorrelate the cohe- rence of the direct and reflected echoes. After receiving all echoes, the multi-frequency samples are arranged in a sort descending ac- cording to the amplitude. Some high amplitude echoes in the same range cell are accumulated to improve the signal-to-noise ratio and the optimal number of high amplitude echoes is analyzed and given by experiments. Finally, simulation results are presented to verify the effectiveness of the method.展开更多
在探讨正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的优化中,一个显著挑战在于其信号检测性能的相对不足。同时,针对基于深度神经网络的索引调制(Deep Neural Network Based Index Modulation,DNN-IM)检测算法...在探讨正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的优化中,一个显著挑战在于其信号检测性能的相对不足。同时,针对基于深度神经网络的索引调制(Deep Neural Network Based Index Modulation,DNN-IM)检测算法,普遍存在着误码率及损失值偏高的问题。为了弥补上述难题,文中提出一种基于多层感知机(Multilayer Perceptron,MLP)的索引调制检测算法,即MLP-IM算法。该算法采用融合两个连接层与一个输出层的架构设计,通过挑选的激活函数实现对OFDM索引调制系统中数据比特的精准还原。首先将OFDM索引调制系统的基础理论巧妙应用于数据的预处理阶段,随后利用仿真数据集对MLP神经网络模型进行全面而深入的离线训练,确保模型的稳健性与准确性。在检测阶段,通过MLP-IM检测算法实现了对OFDM索引调制系统的高效检测。仿真结果表明,所提出的MLP-IM算法在误码率控制和损失值两个方面的性能表现与最大似然检测算法相媲美,甚至在某些场景下超越了现有DNN-IM算法的性能,其性能改善幅度在0.2~6 dB的区间内。展开更多
为实现综合能源系统(integrated energy system,IES)内部能源与碳排放配额同时出清,且解决在不同季节下碳排放规划不合理等问题,该文提出基于“碳-能”协同响应的IES季节性低碳经济优化调度方法。首先,搭建IES的“电热气碳”耦合运行框...为实现综合能源系统(integrated energy system,IES)内部能源与碳排放配额同时出清,且解决在不同季节下碳排放规划不合理等问题,该文提出基于“碳-能”协同响应的IES季节性低碳经济优化调度方法。首先,搭建IES的“电热气碳”耦合运行框架,采用离散化处理打破碳交易与能量交易在时间尺度上的差异,针对各类型主体的功率特性构建多能一致性动态平衡模型;其次,统一融合碳能交互价格,构建新型碳能交互市场,将低碳需求信号引入到各季节的碳能交互价格之中,提出考虑季节排碳规划和需求响应的“碳-能”协同响应策略;最后,以IES运行的经济性与低碳性为目标,依据季节性优化调度流程下发运行计划。算例结果验证了该文所提的新型碳能交互市场与“碳-能”协同响应机制对IES的季节性低碳经济优化调度带来了积极影响。展开更多
针对低信噪比(signal-to-noise ratio,SNR)下跳周期估计和跳频频率估计误差较大的情况,提出了一种基于最大熵二值化时频图以及检测和定位(detection and localization,DL)-YOLOv5s的跳周期估计和跳频频率估计方法。首先,利用最大熵阈值...针对低信噪比(signal-to-noise ratio,SNR)下跳周期估计和跳频频率估计误差较大的情况,提出了一种基于最大熵二值化时频图以及检测和定位(detection and localization,DL)-YOLOv5s的跳周期估计和跳频频率估计方法。首先,利用最大熵阈值分割方法结合形态学滤波对时频图进行处理,获得清晰的最大熵二值化时频图,再通过提出的DL-YOLOv5s模型对最大熵二值化时频图中的跳频信号进行检测和定位,通过增加ASPP模块和BiFPN模块,提高跳频信号的边缘和角点检测精度,并通过BOT3模块引入多头自注意力机制,提高跳频信号的定位精度,最后得到跳频信号的坐标位置,通过坐标的对照关系完成跳周期估计和跳频频率估计。实验结果表明,相较于YOLOv5s模型,提出的DL-YOLOv5s模型精确率P提高了5%,召回率R提高了2.2%,平均精度mAP 0.5和mAP 0.5:0.9分别提高了5.1%和4.2%,相较于YOLOv7、YOLOv8等其他模型,提出的DL-YOLOv5s模型体积更小,更适用于跳频信号参数估计常用的嵌入式设备这类资源受限的环境,且相较于传统跳频信号参数估计方法,提出的方法可以有效降低低信噪比下跳周期估计和跳频频率估计的误差。展开更多
基金supported by the Program for New Century Excellent Talents in University, Ministry of Education (NCET-05-0803)
文摘The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.
基金supported by the National Natural Science Foundation of China(62141108)Natural Science Foundation of Tianjin(19JCQNJC01000)。
文摘Micro-Doppler feature extraction of unmanned aerial vehicles(UAVs)is important for their identification and classification.Noise and the motion state of the UAV are the main factors that may affect feature extraction and estimation precision of the micro-motion parameters.The spectrum of UAV echoes is reconstructed to strengthen the micro-motion feature and reduce the influence of the noise on the condition of low signal to noise ratio(SNR).Then considering the rotor rate variance of UAV in the complex motion state,the cepstrum method is improved to extract the rotation rate of the UAV,and the blade length can be intensively estimated.The experiment results for the simulation data and measured data show that the reconstruction of the spectrum for the UAV echoes is helpful and the relative mean square root error of the rotating speed and blade length estimated by the proposed method can be improved.However,the computation complexity is higher and the heavier computation burden is required.
基金supported by the Aeronautical Science Fund of China(201455960252015209619)
文摘To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and its corresponding characteristics, derives the probability density functions of the LFM signal and Gaussian white noise within WHT based on entropy (WHTE), dimension under different assumptions and puts forward a WHT algorithm based on entropy of slice to improve the capacity of detecting the LFM signal. Entropy of the WHT domain slice is adopted to assess the information size of polar radius or angle slice, which is converted into the weight factor to weight every slice. Double-deck weight is used to weaken the influences of noise and disturbance terms and WHTE treatment and signal detection procedure are also summarized. The rationality of the algorithm is demonstrated through theoretical analysis and formula derivation, the efficiency of the algorithm is verified by simulation comparison between WHT, fractional Fourier transform and periodic WHT, and it is highlighted that the WHTE algorithm has better detection accuracy and range of application against strong noise background.
文摘Ubiquitous radar is a new radar system that provides continuous and uninterrupted multifunction capability within a coverage volume. Continuous coverage from close-in "pop-up" targets in clutter to long-range targets impacts selection of waveform parameters. The coherent processing interval (CPI) must be long enough to achieve a certain signal-to-noise ratio (SNR) that ensures the efficiency of detection. The condition of detection in the case of low SNR is analyzed, and three different cases that would occur during integration are discussed and a method to determine the CPI is presented. The simulation results show that targets detection with SNR as low as -26 dB in the experimental system can possibly determine the CPI.
基金supported by the National Natural Science Foundation of China(61571462)Weapons and Equipment Exploration Research Project(7131464)
文摘This paper proposes a desirable method to detect different kinds of low probability of intercept (LPI) radar signals, targeted at the main intra-pulse modulation method of LPI radar signals including the signals of linear frequency modulation, phase code, and frequency code. Firstly, it improves the coherent integration of LPI radar signals by adding the periodicity of the ambiguity function. Then, it develops a frequency domain detection method based on fast Fourier transform (FFT) and segmented autocorrelation function to detect signals without features of linear frequency modulation by virtue of the distribution characteristics of noise signals in the frequency domain. Finally, this paper gives a verification of the performance of the method for different signal-to-noise ratios by conducting simulation experiments, and compares the method with existing ones. Additionally, this method is characterized by the straightforward calculation and high real-time performance, which is conducive to better detecting all kinds of LPI radar signals.
基金supported by the National Natural Science Foundation of China(6137213661372134+2 种基金61172137)the Fundamental Research Funds for the Central Universities(K5051202005)the China Scholarship Council(CSC)
文摘For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide-ranging multi-frequency radar for low angle targets is proposed. Sequential transmitting multiple pulses with different frequencies are first applied to decorrelate the cohe- rence of the direct and reflected echoes. After receiving all echoes, the multi-frequency samples are arranged in a sort descending ac- cording to the amplitude. Some high amplitude echoes in the same range cell are accumulated to improve the signal-to-noise ratio and the optimal number of high amplitude echoes is analyzed and given by experiments. Finally, simulation results are presented to verify the effectiveness of the method.
文摘在探讨正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的优化中,一个显著挑战在于其信号检测性能的相对不足。同时,针对基于深度神经网络的索引调制(Deep Neural Network Based Index Modulation,DNN-IM)检测算法,普遍存在着误码率及损失值偏高的问题。为了弥补上述难题,文中提出一种基于多层感知机(Multilayer Perceptron,MLP)的索引调制检测算法,即MLP-IM算法。该算法采用融合两个连接层与一个输出层的架构设计,通过挑选的激活函数实现对OFDM索引调制系统中数据比特的精准还原。首先将OFDM索引调制系统的基础理论巧妙应用于数据的预处理阶段,随后利用仿真数据集对MLP神经网络模型进行全面而深入的离线训练,确保模型的稳健性与准确性。在检测阶段,通过MLP-IM检测算法实现了对OFDM索引调制系统的高效检测。仿真结果表明,所提出的MLP-IM算法在误码率控制和损失值两个方面的性能表现与最大似然检测算法相媲美,甚至在某些场景下超越了现有DNN-IM算法的性能,其性能改善幅度在0.2~6 dB的区间内。
文摘为实现综合能源系统(integrated energy system,IES)内部能源与碳排放配额同时出清,且解决在不同季节下碳排放规划不合理等问题,该文提出基于“碳-能”协同响应的IES季节性低碳经济优化调度方法。首先,搭建IES的“电热气碳”耦合运行框架,采用离散化处理打破碳交易与能量交易在时间尺度上的差异,针对各类型主体的功率特性构建多能一致性动态平衡模型;其次,统一融合碳能交互价格,构建新型碳能交互市场,将低碳需求信号引入到各季节的碳能交互价格之中,提出考虑季节排碳规划和需求响应的“碳-能”协同响应策略;最后,以IES运行的经济性与低碳性为目标,依据季节性优化调度流程下发运行计划。算例结果验证了该文所提的新型碳能交互市场与“碳-能”协同响应机制对IES的季节性低碳经济优化调度带来了积极影响。