数码管图像的目标和背景分离不明显,直方图分布较复杂。针对该问题,提出基于拉普拉斯高斯(Laplacian of Gaussian,LoG)算子边缘检测的全局二值化方法对其进行处理,该方法通过提取图像边缘部份的像素灰度获得图像二值化的阈值。处理结果...数码管图像的目标和背景分离不明显,直方图分布较复杂。针对该问题,提出基于拉普拉斯高斯(Laplacian of Gaussian,LoG)算子边缘检测的全局二值化方法对其进行处理,该方法通过提取图像边缘部份的像素灰度获得图像二值化的阈值。处理结果表明,与传统的几种方法相比,该方法能够快速选取良好的二值化阈值,较好地区分目标和背景,在相当大模板宽度内图像二值化的结果都令人满意。展开更多
传统的水果分级与损伤检测大多采用感官评定的方法,随着计算机视觉技术的发展,计算机视觉检测分级技术发展迅速。研究中针对解决水果损伤部位检测的问题提出了一种利用图像处理技术对水果热成像损伤部位进行检测的技术方案。本方案采用L...传统的水果分级与损伤检测大多采用感官评定的方法,随着计算机视觉技术的发展,计算机视觉检测分级技术发展迅速。研究中针对解决水果损伤部位检测的问题提出了一种利用图像处理技术对水果热成像损伤部位进行检测的技术方案。本方案采用Laplacian of Gaussian(LoG)算法对损伤部位进行检测,使用高斯卷积模板抑制噪声,通过设置不同的卷积核尺寸以及σ值获得不同的卷积滤波结果,加强了图像中损伤部位的色彩程度,进而更好地利用边缘检测技术获取损伤部位的边缘信息。采用具有局部损伤的苹果作为研究对象,选取有参考和无参考等5种评价方法,分析卷积过程对于损伤部位边缘检测的影响。结果表明,在水果热成像中LoG算法可以有效地检测水果的损伤部位,卷积核尺寸对于水果损伤部位边缘检测结果的影响远大于σ值,通过增大卷积核尺寸可以有效地加深损坏部分的边缘信息,研究为水果损伤区域检测提供了一种可行的解决方案。展开更多
文摘数码管图像的目标和背景分离不明显,直方图分布较复杂。针对该问题,提出基于拉普拉斯高斯(Laplacian of Gaussian,LoG)算子边缘检测的全局二值化方法对其进行处理,该方法通过提取图像边缘部份的像素灰度获得图像二值化的阈值。处理结果表明,与传统的几种方法相比,该方法能够快速选取良好的二值化阈值,较好地区分目标和背景,在相当大模板宽度内图像二值化的结果都令人满意。
文摘传统的水果分级与损伤检测大多采用感官评定的方法,随着计算机视觉技术的发展,计算机视觉检测分级技术发展迅速。研究中针对解决水果损伤部位检测的问题提出了一种利用图像处理技术对水果热成像损伤部位进行检测的技术方案。本方案采用Laplacian of Gaussian(LoG)算法对损伤部位进行检测,使用高斯卷积模板抑制噪声,通过设置不同的卷积核尺寸以及σ值获得不同的卷积滤波结果,加强了图像中损伤部位的色彩程度,进而更好地利用边缘检测技术获取损伤部位的边缘信息。采用具有局部损伤的苹果作为研究对象,选取有参考和无参考等5种评价方法,分析卷积过程对于损伤部位边缘检测的影响。结果表明,在水果热成像中LoG算法可以有效地检测水果的损伤部位,卷积核尺寸对于水果损伤部位边缘检测结果的影响远大于σ值,通过增大卷积核尺寸可以有效地加深损坏部分的边缘信息,研究为水果损伤区域检测提供了一种可行的解决方案。