Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers r...Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive.We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations.We find that net dispersion,linear loss,gain and filter shaping can affect the quality of Nyquist pulses significantly.We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium.Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers.展开更多
Dissipative soliton resonance(DSR) was previously studied in separated mode-locked fiber lasers within different dispersion regimes including anomalous, near-zero and normal dispersion. Here we propose a method to stu...Dissipative soliton resonance(DSR) was previously studied in separated mode-locked fiber lasers within different dispersion regimes including anomalous, near-zero and normal dispersion. Here we propose a method to study DSR in a single mode-locked laser in these different dispersion regimes. This is achieved by virtue of a waveshaper which can control the laser dispersion readily using software, avoiding the usual tedious cutback method. We find that dispersion has a negligible effect on DSR since the pulse duration keeps constant while dispersion is varied. Moreover, we examine the dynamics of DSR on the parameters of the SA including modulation depth and saturation power, and find that the pulse duration can be changed in a large range when the saturation power is decreased. Our numerical simulations could be important to guide relative experimental studies.展开更多
Based on the scatter matrix of the four-port lossless mismatched circulator, the phase differential equation of the injection-locked magnetron is derived by comparing different effects of the mismatched and perfect ci...Based on the scatter matrix of the four-port lossless mismatched circulator, the phase differential equation of the injection-locked magnetron is derived by comparing different effects of the mismatched and perfect circulator on the injection ratio. Besides, the locking range of the injection-locked magnetron with the mismatched circulator is deduced by functional operation. In addition, the phase differential equation and the locked bandwidth of the injection-locked system with a mismatched circulator are compared with those of the small injection-ratio case with a perfect circulator. The in- fluence of the circulator reflection coefficient on the injection-locked magnetron is also analyzed by numerical calculation. Theoretical analysis shows that the decrement of the locked bandwidth is less than 1% and decrement of the stable phase difference is less than 1.2% when the reflection coefficient is less than 0.1.展开更多
The effects of externally applied resonant magnetic perturbation (RMP) on the locked mode of the neoclassical tearing mode (NTM) are numerically investigated by means of a set of reduced magnetohydrodynamic equations....The effects of externally applied resonant magnetic perturbation (RMP) on the locked mode of the neoclassical tearing mode (NTM) are numerically investigated by means of a set of reduced magnetohydrodynamic equations.It is found that,for a small bootstrap current fraction,three regimes,namely the slight suppression regime,the small locked island (SLI) regime and the big locked island (BLI) regime,are discovered with the increase of RMP strength.For a much higher bootstrap current fraction,however,a new oscillation regime appears instead of the SLI regime,although the other regimes still remain.The physical process in each regime is analyzed in detail based on the phase difference between the NTM and the RMP.Moreover,the critical values of the RMP in both SLI and BLI regimes are obtained,and their dependence on key plasma parameters is discussed as well.展开更多
Magnetohydrodynamic(MHD)instabilities are widely observed during tokamak plasma operation.Magnetic diagnostics provide important information which supports the understanding and control of MHD instabilities.This paper...Magnetohydrodynamic(MHD)instabilities are widely observed during tokamak plasma operation.Magnetic diagnostics provide important information which supports the understanding and control of MHD instabilities.This paper presents the current status of the magnetic diagnostics dedicated to measuring MHD instabilities at the J-TEXT tokamak;the diagnostics consist of five Mirnov probe arrays for measuring high-frequency magnetic perturbations and two saddle-loop arrays for low-frequency magnetic perturbations,such as the locked mode.In recent years,several changes have been made to these arrays.The structure of the probes in the poloidal Mirnov arrays has been optimized to improve their mechanical strength,and the number of in-vessel saddle loops has also been improved to support better spatial resolution.Due to the installation of high-field-side(HFS)divertor targets in early 2019,some of the probes were removed,but an HFS Mirnov array was designed and installed behind the targets.Owing to its excellent toroidal symmetry,the HFS Mirnov array has,for the first time at J-TEXT,provided valuable new information about the locked mode and the quasi-static mode(QSM)in the HFS.Besides,various groups of magnetic diagnostics at different poloidal locations have been systematically used to measure the QSM,which confirmed the poloidal mode number m and the helical structure of the QSM.By including the HFS information,the 2/1 resonant magnetic perturbation(RMP)-induced locked mode was measured to have a poloidal mode number m of~2.展开更多
Aim. Comparison of the trascranial Doppler (TCD) characteristics of cerebral circulation in persistent vegetative status (PVS), locked in syndrome and brain death patients. Methods. Using ...Aim. Comparison of the trascranial Doppler (TCD) characteristics of cerebral circulation in persistent vegetative status (PVS), locked in syndrome and brain death patients. Methods. Using TCD ultrasound to detect the flow velocity and waveform patterns of middle cerebral artery (MCA) and basilar artery (BA) in patients with PVS, locked in syndrome and brain death. Results. The mean velocities of middle cerebral artery (Vmca) and basilar artery (Vba) were 30.0cm/s and 24.3cm/s in PVS patients respectively, which decreased 45.0% and 14.4% in comparing with normal value. For patients with locked in syndrome, Vmca and Vba were 49.7cm/s and 9.8cm/s, which decreased 5.0% and 61.7% than the normal value respectively. These results showed that the decrease of anterior circulation was predominant in PVS, and the decrease of posterior circulation was predominant in locked in syndrome. A unique diastolic reverse flow, short peak systolic wave or undetectable flow signal in middle cerebral artery were predominant in brain death patients, which was completely different from that of either PVS or locked in syndrome. Conclusion. TCD was a valuable tool in distinguishing PVS, locked in syndrome and brain death patients according to the differences in velocities and patterns of anterior and posterior cerebral arteries.展开更多
Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative app...Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative applications using SWIPT,which is mainly based on wireless energy harvesting from electromagnetic waves used in communications.Wireless power transfer that uses magnetrons has been developed for communication technologies.Injection-locked magnetrons that can be used to facilitate high-power SWIPT for several devices are reviewed in this paper.This new technology is expected to pave the way for promoting the application of SWIPT in a wide range of fields.展开更多
We report an efficient continuous-wave self-Raman laser at 1176 nm based on a 20-mm-long composite YVO4/Nd:YVO4/YVO4 crystal and pumped by a wavelength-locked 878.9 nm diode laser.A maximum output power of 5.3 W is a...We report an efficient continuous-wave self-Raman laser at 1176 nm based on a 20-mm-long composite YVO4/Nd:YVO4/YVO4 crystal and pumped by a wavelength-locked 878.9 nm diode laser.A maximum output power of 5.3 W is achieved at a pump power of 26 W,corresponding to an optical conversion efficiency of 20%and a slope efficiency of 21%.The Raman threshold for the diode pump power was only 0.92 W.The results reveal that in-band pumping by a wavelength-locked diode laser significantly enhances output power and efficiency of self-Raman lasers by virtue of improved pump absorption and relieved thermal loading.展开更多
John Locke's political ideas played a very important role in promoting the development of western democratic politics.They greatly influenced the drafting of The Declaration of Independence and The Declaration of ...John Locke's political ideas played a very important role in promoting the development of western democratic politics.They greatly influenced the drafting of The Declaration of Independence and The Declaration of the Rights of Man and the Citizen,gave impetus to American Revolution and French Revolution in the eighteenth century,laid the theoretic foundation for modern politics and shaped the modern constitutional system.展开更多
Prediction of disruptions caused by locked modes using the Back-Propagation (BP) neural network is completed on J-TEXT tokamak. The network, which is based on the BP neural network, uses Mirnov coils and locked mode...Prediction of disruptions caused by locked modes using the Back-Propagation (BP) neural network is completed on J-TEXT tokamak. The network, which is based on the BP neural network, uses Mirnov coils and locked mode coils signals as input data, and outputs a signal including information of prediction of locked mode. The rate of successful prediction of locked modes is more than 90%. For intrinsic locked mode disruptions, the network can give a prewarning signal about 1 ms ahead of the locking-time. For the disruption caused by resonant magnetic perturbation (RMPs) locked modes, the network can give a prewarning signal about 10 ms ahead of the locking-time.展开更多
We propose a novel hybrid phase-locked loop (PLL) architecture for overcoming the trade-off between fast locking time and low spur. To reduce the settling time and meanwhile suppress the reference spurs, we employ a...We propose a novel hybrid phase-locked loop (PLL) architecture for overcoming the trade-off between fast locking time and low spur. To reduce the settling time and meanwhile suppress the reference spurs, we employ a wide-band single-path PLL and a narrow-band dual-path PLL in a transient state and a steady state, respectively, by changing the loop bandwidth according to the gain of voltage controlled oscillator (VCO) and the resister of the loop filter. The hybrid PLL is implemented in a 0.18-μm complementary metal oxide semiconductor (CMOS) process with a total die area of 1.4×0.46 mm2. The measured results exhibit a reference spur level of lower than -73 dB with a reference frequency of 10 MHz and a settling time of 20 μs with 40 MHz frequency jump at 2 GHz. The total power consumption of the hybrid PLL is less than 27 mW with a supply voltage of 1.8 V.展开更多
The frequency characteristics of free oscillation magnetron(FOM) and injection-locked magnetron(ILM) are theoretically investigated.By using the equal power voltage obtained from the experiment data,expressions of...The frequency characteristics of free oscillation magnetron(FOM) and injection-locked magnetron(ILM) are theoretically investigated.By using the equal power voltage obtained from the experiment data,expressions of the frequency and radio frequency(RF) voltage of FOM and ILM,as well as the locking bandwidth,on the anode voltage and magnetic field are derived.With the increase of the anode voltage and the decrease of the magnetic field,the power and its growth rate increase,while the frequency increases and its growth rate decreases.The theoretical frequency and power of FOM agree with the particle-in-cell(PIC) simulation results.Besides,the theoretical trends of the power and frequency with the anode voltage and magnetic field are consistent with the experimental results,which verifies the accuracy of the theory.The theory provides a novel calculation method of frequency characteristics.It can approximately analyze the power and frequency of both FOM and ILM,which promotes the industrial applications of magnetron and microwave energy.展开更多
In this paper the laser activities of a diode-pumped Yb:LuAG ceramic which was prepared by the solid-state reactive sintering method were reported. The maximum output power was 1.86 W in the continuous wave(CW) las...In this paper the laser activities of a diode-pumped Yb:LuAG ceramic which was prepared by the solid-state reactive sintering method were reported. The maximum output power was 1.86 W in the continuous wave(CW) laser operation,corresponding to a slope efficiency of 53.6%. The CW laser could be tuned from 1030 to 1096 nm by inserting a prism in the cavity. With the assist of a semiconductor saturable absorber mirror(SESAM), passive mode-locking was realized,delivering sub-picosecond pulses with 933 fs duration and an average power of 532 m W at a repetition rate of 90.35 MHz.展开更多
This paper reports the periodic power variation of the pulse-train in a passively mode-locked soliton fiber ring laser. It can obtain either the uniform or nonuniform pulse-train output by simply rotating the polariza...This paper reports the periodic power variation of the pulse-train in a passively mode-locked soliton fiber ring laser. It can obtain either the uniform or nonuniform pulse-train output by simply rotating the polarization controllers. The experimental results show that the pulse-train nonuniformity is caused by the interaction between the nonuniform polarization states of the soliton pulses and the passive polarizer in the cavity.展开更多
We report on the generation of conventional and dissipative solitons in erbium-doped fiber lasers by the evanescent field interaction between the propagating light and a multilayer molybdenum disulfide(MoS_2) thin f...We report on the generation of conventional and dissipative solitons in erbium-doped fiber lasers by the evanescent field interaction between the propagating light and a multilayer molybdenum disulfide(MoS_2) thin film. The MoS_2 film is fabricated by depositing the MoS_2 water–ethanol mixture on a D-shape-fiber(DF) repetitively. The measured nonsaturable loss, saturable optical intensity, and the modulation depth of this device are 13.3%, 110 MW/cm^2, and 3.4% respectively.Owing to the very low nonsaturable loss, the laser threshold of conventional soliton is as low as 4.8 mW. The further increase of net cavity dispersion to normal regime, stable dissipation soliton pulse trains with a spectral bandwidth of 11.7 nm and pulse duration of 116 ps are successfully generated. Our experiment demonstrates that the MoS_2-DF device can indeed be used as a high performance saturable absorber for further applications in ultrafast photonics.展开更多
An all-fiber mode-locked fiber laser was achieved with a saturable absorber based on a tapered fiber deposited with layered molybdenum selenide(MoSe_2). The laser was operated at a central wavelength of 1558.35 nm wit...An all-fiber mode-locked fiber laser was achieved with a saturable absorber based on a tapered fiber deposited with layered molybdenum selenide(MoSe_2). The laser was operated at a central wavelength of 1558.35 nm with an output spectral width of 2.9 nm, and a pulse repetition rate of 16.33 MHz. To the best of our knowledge, this is the first report on mode-locked fiber lasers using MoSe_2 saturable absorbers based on tapered fibers.展开更多
A Kerr-lens mode-locked Ti:sapphire laser operating in a non-soliton regime is demonstrated. Dispersive wave generation is observed as a result of third order dispersion in the vicinity of zero dispersion. The charac...A Kerr-lens mode-locked Ti:sapphire laser operating in a non-soliton regime is demonstrated. Dispersive wave generation is observed as a result of third order dispersion in the vicinity of zero dispersion. The characteristics of the Ti:sapphire l^ser operating in a positive dispersion regime are presented, where the oscillator directly generates pulses with duration continuously tunable from 0.37 ps to 2.11 ps, and 36 fs pulses are achieved atter extracavity compression. The oscillation is numerically simulated with an extended nonlinear Schr6dinger equation, and the simulation results are in good agreement with the experimental results.展开更多
Truncation manipulation is a simple but effective way to improve the intensity distribution properties of the phase-locked Gaussian beam array at the receiving plane. In this paper, the analytical expression for the p...Truncation manipulation is a simple but effective way to improve the intensity distribution properties of the phase-locked Gaussian beam array at the receiving plane. In this paper, the analytical expression for the propagation of the phase-locked truncated Gaussian beam array in a turbulent atmosphere is obtained based on the extended Huygens--Fresnel principle. Power in the diffraction-limited bucket is introduced as the beam quality factor to evaluate the influence of different truncation parameters. The dependence of optimal truncation ratio on the number of beamlets, the intensity of turbulence, propagation distance and laser wavelength is calculated and discussed. It is revealed that the optimal truncation ratio is larger for the laser array that contains more lasers, and the optimal truncation ratio will shift to a larger value with an increase in propagation distance and decrease in intensity of atmosphere turbulence. The optimal truncation ratio is independent of laser wavelength.展开更多
A side band power re-injection locked (SBPRIL) magnetron is presented in this paper. A tuning stub is placed between the external injection locked (EIL) magnetron and the circulator. Side band power of the EIL mag...A side band power re-injection locked (SBPRIL) magnetron is presented in this paper. A tuning stub is placed between the external injection locked (EIL) magnetron and the circulator. Side band power of the EIL magnetron is reflected back to the magnetron. The reflected side band power is reused and pulled back to the central frequency. A phase-locking model is developed from circuit theory to explain the process of reuse of side band power in SBPRIL magnetron. Theoretical analysis proves that the side band power is pulled back to the central frequency of the SBPRIL magnetron, then the amplitude of the RF voltage increases and the phase noise performance is improved. Particle-in-cell (PIC) simulation of a 10-vane continuous wave (CW) magnetron model is presented. Computer simulation predicts that the frequency spectrum's peak of the SBPRIL magnetron has an increase of 3.25 dB compared with the free running magnetron. The phase noise performance at the side band offset reduces 12.05 dB for the SBPRIL magnetron. Besides, the SBPRIL magnetron experiment is presented. Experimental results show that the spectrum peak rises by 14.29% for SBPRIL magnetron compared with the free running magnetron. The phase noise reduces more than 25 dB at 45-kHz offset compared with the free running magnetron.展开更多
An environmentally stable, repetition rate tunable, all-polarization-maintaining, Er-doped pulse fiber laser with a single-wall carbon nanotubes saturated absorber is demonstrated. The ring laser cavity includes a del...An environmentally stable, repetition rate tunable, all-polarization-maintaining, Er-doped pulse fiber laser with a single-wall carbon nanotubes saturated absorber is demonstrated. The ring laser cavity includes a delay line enabling a tunable repetition rate to vary from 35.52 MHz to 35.64 MHz with continuous mode-locked operation. The laser output parameters confirm that the tunable mode-locked operations are stable. High environmental stability is also confirmed by the -130 dBc/Hz low phase noise, a 70-dB signal-to-noise ratio of radio frequency signals, a low amplitude fluctuation of 5.76 × 10-4, and a low fluctuation of reoetition rate of 12 Hz. The laser shows a high de^ree of oolarization of 93%.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11621404,11561121003,11727812,61775059,12074122,62022033,and 11704123)Shanghai Rising-Star Program,the Sustainedly Supported Foundation by the National Key Laboratory of Science and Technology on Space Microwave(Grant No.HTKT2022KL504008)+1 种基金Shanghai Natural Science Foundation(Grant No.23ZR1419000)the National Key Laboratory Foundation of China(Grant No.6142411196307).
文摘Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive.We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations.We find that net dispersion,linear loss,gain and filter shaping can affect the quality of Nyquist pulses significantly.We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium.Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers.
基金Project supported by the Innovation Program for Quantum Science and Technology(Grant No.2023ZD0301000)the National Natural Science Foundation of China(Grant Nos.11621404,11561121003,11727812,61775059,12074122,62022033,and 11704123)+2 种基金Sustainedly supported by the National Key Laboratory of Science and Technology on Space Microwave(Grant No.HTKT2022KL504008)the Shanghai Natural Science Foundation(Grant No.23ZR1419000)the National Key Laboratory Foundation of China(Grant No.6142411196307)。
文摘Dissipative soliton resonance(DSR) was previously studied in separated mode-locked fiber lasers within different dispersion regimes including anomalous, near-zero and normal dispersion. Here we propose a method to study DSR in a single mode-locked laser in these different dispersion regimes. This is achieved by virtue of a waveshaper which can control the laser dispersion readily using software, avoiding the usual tedious cutback method. We find that dispersion has a negligible effect on DSR since the pulse duration keeps constant while dispersion is varied. Moreover, we examine the dynamics of DSR on the parameters of the SA including modulation depth and saturation power, and find that the pulse duration can be changed in a large range when the saturation power is decreased. Our numerical simulations could be important to guide relative experimental studies.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328901)the National Natural Science Foundation of China(Grant No.11305177)
文摘Based on the scatter matrix of the four-port lossless mismatched circulator, the phase differential equation of the injection-locked magnetron is derived by comparing different effects of the mismatched and perfect circulator on the injection ratio. Besides, the locking range of the injection-locked magnetron with the mismatched circulator is deduced by functional operation. In addition, the phase differential equation and the locked bandwidth of the injection-locked system with a mismatched circulator are compared with those of the small injection-ratio case with a perfect circulator. The in- fluence of the circulator reflection coefficient on the injection-locked magnetron is also analyzed by numerical calculation. Theoretical analysis shows that the decrement of the locked bandwidth is less than 1% and decrement of the stable phase difference is less than 1.2% when the reflection coefficient is less than 0.1.
基金National Key R&D Program of China (Nos. 2017YFE0301900 and 2017YFE0301100)National Natural Science Foundation of China (No. 11675083)+1 种基金the Fundamental Research Funds for the Central Universities (Nos. DUT18ZD101 and DUT17LK38)the Dalian Youth Science and Technology Project Support Program (No. 2015R01).
文摘The effects of externally applied resonant magnetic perturbation (RMP) on the locked mode of the neoclassical tearing mode (NTM) are numerically investigated by means of a set of reduced magnetohydrodynamic equations.It is found that,for a small bootstrap current fraction,three regimes,namely the slight suppression regime,the small locked island (SLI) regime and the big locked island (BLI) regime,are discovered with the increase of RMP strength.For a much higher bootstrap current fraction,however,a new oscillation regime appears instead of the SLI regime,although the other regimes still remain.The physical process in each regime is analyzed in detail based on the phase difference between the NTM and the RMP.Moreover,the critical values of the RMP in both SLI and BLI regimes are obtained,and their dependence on key plasma parameters is discussed as well.
基金supported by the National MCF Energy R&D Program of China(No.2018YFE0309100)National Natural Science Foundation of China(NSFC)(No.11905078)‘the Fundamental Research Funds for the Central Universities’(No.2020kfy XJJS003)。
文摘Magnetohydrodynamic(MHD)instabilities are widely observed during tokamak plasma operation.Magnetic diagnostics provide important information which supports the understanding and control of MHD instabilities.This paper presents the current status of the magnetic diagnostics dedicated to measuring MHD instabilities at the J-TEXT tokamak;the diagnostics consist of five Mirnov probe arrays for measuring high-frequency magnetic perturbations and two saddle-loop arrays for low-frequency magnetic perturbations,such as the locked mode.In recent years,several changes have been made to these arrays.The structure of the probes in the poloidal Mirnov arrays has been optimized to improve their mechanical strength,and the number of in-vessel saddle loops has also been improved to support better spatial resolution.Due to the installation of high-field-side(HFS)divertor targets in early 2019,some of the probes were removed,but an HFS Mirnov array was designed and installed behind the targets.Owing to its excellent toroidal symmetry,the HFS Mirnov array has,for the first time at J-TEXT,provided valuable new information about the locked mode and the quasi-static mode(QSM)in the HFS.Besides,various groups of magnetic diagnostics at different poloidal locations have been systematically used to measure the QSM,which confirmed the poloidal mode number m and the helical structure of the QSM.By including the HFS information,the 2/1 resonant magnetic perturbation(RMP)-induced locked mode was measured to have a poloidal mode number m of~2.
文摘Aim. Comparison of the trascranial Doppler (TCD) characteristics of cerebral circulation in persistent vegetative status (PVS), locked in syndrome and brain death patients. Methods. Using TCD ultrasound to detect the flow velocity and waveform patterns of middle cerebral artery (MCA) and basilar artery (BA) in patients with PVS, locked in syndrome and brain death. Results. The mean velocities of middle cerebral artery (Vmca) and basilar artery (Vba) were 30.0cm/s and 24.3cm/s in PVS patients respectively, which decreased 45.0% and 14.4% in comparing with normal value. For patients with locked in syndrome, Vmca and Vba were 49.7cm/s and 9.8cm/s, which decreased 5.0% and 61.7% than the normal value respectively. These results showed that the decrease of anterior circulation was predominant in PVS, and the decrease of posterior circulation was predominant in locked in syndrome. A unique diastolic reverse flow, short peak systolic wave or undetectable flow signal in middle cerebral artery were predominant in brain death patients, which was completely different from that of either PVS or locked in syndrome. Conclusion. TCD was a valuable tool in distinguishing PVS, locked in syndrome and brain death patients according to the differences in velocities and patterns of anterior and posterior cerebral arteries.
基金the collaborative research program from the Microwave Energy Transmission Laboratory(METLAB)Research Insti⁃tute for Sustainable Humanosphere(RISH)Kyoto University and National Institute of Information and Communications Technology(NICT),JAPAN under Grant No.02401.
文摘Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative applications using SWIPT,which is mainly based on wireless energy harvesting from electromagnetic waves used in communications.Wireless power transfer that uses magnetrons has been developed for communication technologies.Injection-locked magnetrons that can be used to facilitate high-power SWIPT for several devices are reviewed in this paper.This new technology is expected to pave the way for promoting the application of SWIPT in a wide range of fields.
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20130453 and BK20130434)the National Natural Science Foundation of China(Grant No.11304271)
文摘We report an efficient continuous-wave self-Raman laser at 1176 nm based on a 20-mm-long composite YVO4/Nd:YVO4/YVO4 crystal and pumped by a wavelength-locked 878.9 nm diode laser.A maximum output power of 5.3 W is achieved at a pump power of 26 W,corresponding to an optical conversion efficiency of 20%and a slope efficiency of 21%.The Raman threshold for the diode pump power was only 0.92 W.The results reveal that in-band pumping by a wavelength-locked diode laser significantly enhances output power and efficiency of self-Raman lasers by virtue of improved pump absorption and relieved thermal loading.
文摘John Locke's political ideas played a very important role in promoting the development of western democratic politics.They greatly influenced the drafting of The Declaration of Independence and The Declaration of the Rights of Man and the Citizen,gave impetus to American Revolution and French Revolution in the eighteenth century,laid the theoretic foundation for modern politics and shaped the modern constitutional system.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2010GB107004,2011GB109001,2008CB717805)National Natural Science Foundation of China(Nos.11275080,10935004)
文摘Prediction of disruptions caused by locked modes using the Back-Propagation (BP) neural network is completed on J-TEXT tokamak. The network, which is based on the BP neural network, uses Mirnov coils and locked mode coils signals as input data, and outputs a signal including information of prediction of locked mode. The rate of successful prediction of locked modes is more than 90%. For intrinsic locked mode disruptions, the network can give a prewarning signal about 1 ms ahead of the locking-time. For the disruption caused by resonant magnetic perturbation (RMPs) locked modes, the network can give a prewarning signal about 10 ms ahead of the locking-time.
基金supported by the National Natural Science Foundation of China(Grant No.61307128)the National Basic Research Program of China(GrantNo.2010CB327505)+1 种基金the Specialized Research Found for the Doctoral Program of Higher Education of China(Grant No.20131101120027)the Basic Research Foundation of Beijing Institute of Technology of China(Grant No.20120542015)
文摘We propose a novel hybrid phase-locked loop (PLL) architecture for overcoming the trade-off between fast locking time and low spur. To reduce the settling time and meanwhile suppress the reference spurs, we employ a wide-band single-path PLL and a narrow-band dual-path PLL in a transient state and a steady state, respectively, by changing the loop bandwidth according to the gain of voltage controlled oscillator (VCO) and the resister of the loop filter. The hybrid PLL is implemented in a 0.18-μm complementary metal oxide semiconductor (CMOS) process with a total die area of 1.4×0.46 mm2. The measured results exhibit a reference spur level of lower than -73 dB with a reference frequency of 10 MHz and a settling time of 20 μs with 40 MHz frequency jump at 2 GHz. The total power consumption of the hybrid PLL is less than 27 mW with a supply voltage of 1.8 V.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328901)the National Natural Science Foundation of China(Grant No.11305177)
文摘The frequency characteristics of free oscillation magnetron(FOM) and injection-locked magnetron(ILM) are theoretically investigated.By using the equal power voltage obtained from the experiment data,expressions of the frequency and radio frequency(RF) voltage of FOM and ILM,as well as the locking bandwidth,on the anode voltage and magnetic field are derived.With the increase of the anode voltage and the decrease of the magnetic field,the power and its growth rate increase,while the frequency increases and its growth rate decreases.The theoretical frequency and power of FOM agree with the particle-in-cell(PIC) simulation results.Besides,the theoretical trends of the power and frequency with the anode voltage and magnetic field are consistent with the experimental results,which verifies the accuracy of the theory.The theory provides a novel calculation method of frequency characteristics.It can approximately analyze the power and frequency of both FOM and ILM,which promotes the industrial applications of magnetron and microwave energy.
基金Project supported by the National Major Scientific Instruments Development Project of China(Grant No.2012YQ120047)the National Key R&D Program of China(Grant No.2016YFB0402105)+1 种基金the National Natural Science Foundation of China(Grant Nos.61205130 and 61575212)the Key Research Project of the Frontier Science of the Chinese Academy of Sciences(Grant No.QYZDB-SSW-JSC022)
文摘In this paper the laser activities of a diode-pumped Yb:LuAG ceramic which was prepared by the solid-state reactive sintering method were reported. The maximum output power was 1.86 W in the continuous wave(CW) laser operation,corresponding to a slope efficiency of 53.6%. The CW laser could be tuned from 1030 to 1096 nm by inserting a prism in the cavity. With the assist of a semiconductor saturable absorber mirror(SESAM), passive mode-locking was realized,delivering sub-picosecond pulses with 933 fs duration and an average power of 532 m W at a repetition rate of 90.35 MHz.
基金Project supported by the Natural Science Foundation of Guangdong Province,China (Grant No 04010397)
文摘This paper reports the periodic power variation of the pulse-train in a passively mode-locked soliton fiber ring laser. It can obtain either the uniform or nonuniform pulse-train output by simply rotating the polarization controllers. The experimental results show that the pulse-train nonuniformity is caused by the interaction between the nonuniform polarization states of the soliton pulses and the passive polarizer in the cavity.
基金Project supported by the National Natural Science Foundation of China(Grant No.61378024)
文摘We report on the generation of conventional and dissipative solitons in erbium-doped fiber lasers by the evanescent field interaction between the propagating light and a multilayer molybdenum disulfide(MoS_2) thin film. The MoS_2 film is fabricated by depositing the MoS_2 water–ethanol mixture on a D-shape-fiber(DF) repetitively. The measured nonsaturable loss, saturable optical intensity, and the modulation depth of this device are 13.3%, 110 MW/cm^2, and 3.4% respectively.Owing to the very low nonsaturable loss, the laser threshold of conventional soliton is as low as 4.8 mW. The further increase of net cavity dispersion to normal regime, stable dissipation soliton pulse trains with a spectral bandwidth of 11.7 nm and pulse duration of 116 ps are successfully generated. Our experiment demonstrates that the MoS_2-DF device can indeed be used as a high performance saturable absorber for further applications in ultrafast photonics.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB0504500)the National Natural Science Foundation of China(Grant Nos.61475171,61705244,61307056,and 61875052)the Natural Science Foundation of Shanghai,China(Grant Nos.17ZR1433900 and17ZR1434200)
文摘An all-fiber mode-locked fiber laser was achieved with a saturable absorber based on a tapered fiber deposited with layered molybdenum selenide(MoSe_2). The laser was operated at a central wavelength of 1558.35 nm with an output spectral width of 2.9 nm, and a pulse repetition rate of 16.33 MHz. To the best of our knowledge, this is the first report on mode-locked fiber lasers using MoSe_2 saturable absorbers based on tapered fibers.
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB806002)the National High Technology Research and Development Program of China (Grant No. 2007AA03Z447)+3 种基金National Natural Science Foundation of China (Grant Nos. 60678012 and 60838004)the Foundation for Key Program of Ministry of Education, China (Grant No. 108032)FANEDD(Grant No. 2007B34)NCET (Grant No. NCET-07-0597)
文摘A Kerr-lens mode-locked Ti:sapphire laser operating in a non-soliton regime is demonstrated. Dispersive wave generation is observed as a result of third order dispersion in the vicinity of zero dispersion. The characteristics of the Ti:sapphire l^ser operating in a positive dispersion regime are presented, where the oscillator directly generates pulses with duration continuously tunable from 0.37 ps to 2.11 ps, and 36 fs pulses are achieved atter extracavity compression. The oscillation is numerically simulated with an extended nonlinear Schr6dinger equation, and the simulation results are in good agreement with the experimental results.
基金supported by the Innovation Foundation for Postgraduate of Hunan Province
文摘Truncation manipulation is a simple but effective way to improve the intensity distribution properties of the phase-locked Gaussian beam array at the receiving plane. In this paper, the analytical expression for the propagation of the phase-locked truncated Gaussian beam array in a turbulent atmosphere is obtained based on the extended Huygens--Fresnel principle. Power in the diffraction-limited bucket is introduced as the beam quality factor to evaluate the influence of different truncation parameters. The dependence of optimal truncation ratio on the number of beamlets, the intensity of turbulence, propagation distance and laser wavelength is calculated and discussed. It is revealed that the optimal truncation ratio is larger for the laser array that contains more lasers, and the optimal truncation ratio will shift to a larger value with an increase in propagation distance and decrease in intensity of atmosphere turbulence. The optimal truncation ratio is independent of laser wavelength.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328902)the National Natural Science Foundation of China(Grant No.61501311)
文摘A side band power re-injection locked (SBPRIL) magnetron is presented in this paper. A tuning stub is placed between the external injection locked (EIL) magnetron and the circulator. Side band power of the EIL magnetron is reflected back to the magnetron. The reflected side band power is reused and pulled back to the central frequency. A phase-locking model is developed from circuit theory to explain the process of reuse of side band power in SBPRIL magnetron. Theoretical analysis proves that the side band power is pulled back to the central frequency of the SBPRIL magnetron, then the amplitude of the RF voltage increases and the phase noise performance is improved. Particle-in-cell (PIC) simulation of a 10-vane continuous wave (CW) magnetron model is presented. Computer simulation predicts that the frequency spectrum's peak of the SBPRIL magnetron has an increase of 3.25 dB compared with the free running magnetron. The phase noise performance at the side band offset reduces 12.05 dB for the SBPRIL magnetron. Besides, the SBPRIL magnetron experiment is presented. Experimental results show that the spectrum peak rises by 14.29% for SBPRIL magnetron compared with the free running magnetron. The phase noise reduces more than 25 dB at 45-kHz offset compared with the free running magnetron.
文摘An environmentally stable, repetition rate tunable, all-polarization-maintaining, Er-doped pulse fiber laser with a single-wall carbon nanotubes saturated absorber is demonstrated. The ring laser cavity includes a delay line enabling a tunable repetition rate to vary from 35.52 MHz to 35.64 MHz with continuous mode-locked operation. The laser output parameters confirm that the tunable mode-locked operations are stable. High environmental stability is also confirmed by the -130 dBc/Hz low phase noise, a 70-dB signal-to-noise ratio of radio frequency signals, a low amplitude fluctuation of 5.76 × 10-4, and a low fluctuation of reoetition rate of 12 Hz. The laser shows a high de^ree of oolarization of 93%.