基于网络编码(network coding,NC)的网络通信,其中间节点首先对来自源节点的信包进行编码,然后再转发,目标节点通过反编码得到源节点的原始信息.大量的理论结果表明,网络编码可以提高整个网络的吞吐量和稳定性.为了研究网络编码在P2P(pe...基于网络编码(network coding,NC)的网络通信,其中间节点首先对来自源节点的信包进行编码,然后再转发,目标节点通过反编码得到源节点的原始信息.大量的理论结果表明,网络编码可以提高整个网络的吞吐量和稳定性.为了研究网络编码在P2P(peer to peer)网络中的优越性,设计并实现了一个基于稀疏线性编码技术的P2P内容分发系统.实验结果表明,基于网络编码的系统在平均下载时间、总分发时间、整体吞吐量等几个方面都优于无编码的内容分发系统.展开更多
基于特征提取的图像分类算法的核心问题是如何对特征进行有效编码.局部约束线性编码(Locality-constrained linear coding,LLC)因其良好的特征重构性与局部平滑稀疏性,已取得了很好的分类性能.然而,LLC编码的分类性能对编码过程中的近邻...基于特征提取的图像分类算法的核心问题是如何对特征进行有效编码.局部约束线性编码(Locality-constrained linear coding,LLC)因其良好的特征重构性与局部平滑稀疏性,已取得了很好的分类性能.然而,LLC编码的分类性能对编码过程中的近邻数k的大小比较敏感,随着k的增大,编码中的某些负值元素与正值元素的差值绝对值也可能增大,这使得LLC越来越不稳定.本文通过在LLC优化模型的目标方程中引入非负约束,提出了一种新型编码方式,称为非负局部约束线性编码(Non-negative locality-constrained linear coding,NNLLC).该模型一般采取迭代优化算法进行求解,但其计算复杂度较大.因此,本文提出两种近似非负编码算法,其编码速度与LLC一样快速.实验结果表明,在多个广泛使用的图像数据集上,相比于LLC,NNLLC编码方式不仅在分类精确率上提高了近1%~4%,而且对k的选取具有更强的鲁棒性.展开更多
传统的稀疏编码方法在遇到大规模数据时,因计算复杂度高而出现异常。针对这种异常导致不能很好地进行特征提取的问题,提出正则化双阶线性稀疏编码DLRSC(Double Linear Regularization Sparse Coding)方法。借助于广义多特征子空间框架...传统的稀疏编码方法在遇到大规模数据时,因计算复杂度高而出现异常。针对这种异常导致不能很好地进行特征提取的问题,提出正则化双阶线性稀疏编码DLRSC(Double Linear Regularization Sparse Coding)方法。借助于广义多特征子空间框架来学习噪声和异常像素的结构特征,通过使用L1球理论,计算出唯一的近似解,并且利用滤波技巧避免了大规模数据的复杂计算,从而降低了时间及空间复杂度。最后,在ORL及Yale两大通用人脸数据库上的实验验证了所提的DLRSC方法的有效性,实验结果表明,相比其他几种最先进的稀疏编码方法,所提方法取得了更好的识别效果。展开更多
文摘基于网络编码(network coding,NC)的网络通信,其中间节点首先对来自源节点的信包进行编码,然后再转发,目标节点通过反编码得到源节点的原始信息.大量的理论结果表明,网络编码可以提高整个网络的吞吐量和稳定性.为了研究网络编码在P2P(peer to peer)网络中的优越性,设计并实现了一个基于稀疏线性编码技术的P2P内容分发系统.实验结果表明,基于网络编码的系统在平均下载时间、总分发时间、整体吞吐量等几个方面都优于无编码的内容分发系统.
文摘基于特征提取的图像分类算法的核心问题是如何对特征进行有效编码.局部约束线性编码(Locality-constrained linear coding,LLC)因其良好的特征重构性与局部平滑稀疏性,已取得了很好的分类性能.然而,LLC编码的分类性能对编码过程中的近邻数k的大小比较敏感,随着k的增大,编码中的某些负值元素与正值元素的差值绝对值也可能增大,这使得LLC越来越不稳定.本文通过在LLC优化模型的目标方程中引入非负约束,提出了一种新型编码方式,称为非负局部约束线性编码(Non-negative locality-constrained linear coding,NNLLC).该模型一般采取迭代优化算法进行求解,但其计算复杂度较大.因此,本文提出两种近似非负编码算法,其编码速度与LLC一样快速.实验结果表明,在多个广泛使用的图像数据集上,相比于LLC,NNLLC编码方式不仅在分类精确率上提高了近1%~4%,而且对k的选取具有更强的鲁棒性.
文摘传统的稀疏编码方法在遇到大规模数据时,因计算复杂度高而出现异常。针对这种异常导致不能很好地进行特征提取的问题,提出正则化双阶线性稀疏编码DLRSC(Double Linear Regularization Sparse Coding)方法。借助于广义多特征子空间框架来学习噪声和异常像素的结构特征,通过使用L1球理论,计算出唯一的近似解,并且利用滤波技巧避免了大规模数据的复杂计算,从而降低了时间及空间复杂度。最后,在ORL及Yale两大通用人脸数据库上的实验验证了所提的DLRSC方法的有效性,实验结果表明,相比其他几种最先进的稀疏编码方法,所提方法取得了更好的识别效果。