A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz abso...A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz absolute bandwidth and 142.7% relative bandwidth covering from 3.38 GHz to 20 GHz with voltage standing wave ratio (VSWR) below two. A quasi-omnidirectional and quasi-symmetrical radiation pattern in H plane is obtained in the whole bandwidth. The high performance of the antenna is validated with measured and simulated results given. The antenna can be applied for the system design of UWB wireless communication.展开更多
For wired local area networks(LANs),their effectiveness and invulnerability are very critical.It is extraordinarily significant to evaluate the network performance effectively in the design of a reasonable network top...For wired local area networks(LANs),their effectiveness and invulnerability are very critical.It is extraordinarily significant to evaluate the network performance effectively in the design of a reasonable network topology and the performance improvement of the networks.However,there are many factors affecting the performance of the networks,and the relation among them is also complicated.How to evaluate the performance of the wired LANs more accurately has been a heavy challenge in the network research.In order to solve the problem,this paper presents a performance evaluation method that evaluates the effectiveness and invulnerability of the wired LANs.Compared to traditional statistical methods,it has the distinct advantage of being able to handle several dependent variables simultaneously and tolerates the measurement errors among these independent variables and dependent variables.Finally,the rationality and validity of this method are verified by the extensive experimental simulation.展开更多
Indoor positioning systems have been sufficiently researched to provide location information of persons and devices.This paper is focused on the current research and further development of indoor positioning.The stand...Indoor positioning systems have been sufficiently researched to provide location information of persons and devices.This paper is focused on the current research and further development of indoor positioning.The standard evolution and industry development are summarized.There are various positioning systems according to the scenarios,cost and accuracy.However,there is a basic positioning system framework including information extraction,measurement and calculation.In particular,the detailed positioning technologies mainly including cellular positioning and Local Area Network(LAN) positioning are listed and compared to provide a reference for practical applications.Finally,we summarize the challenges of indoor positioning and give a3-phase evolution route.展开更多
This work is about the development of a super low noise amplifier with minimum power consumption and high gain for several wireless applications.The amplifier operates at frequency bands of 0.9-2.4 GHz and can be used...This work is about the development of a super low noise amplifier with minimum power consumption and high gain for several wireless applications.The amplifier operates at frequency bands of 0.9-2.4 GHz and can be used in many applications like Wireless local area network(WLAN),WiFi,Bluetooth,ZigBee and Global System for mobile communications(GSM).This new design can be employed for the IEEE 802.15.4 standard in industrial,scientific and medical(ISM) Band.The enhancement mode pseudomorphic high electron mobility transistor PHEMT is used here due to its high linearity,better performance and less noisy operation.The common source inductive degeneration method is employed here to enhance the gain of amplifier.The amplifier produces a gain of more than 17 dB and noise figure of about 0.5 dB.The lower values of S11 and S22 reflect the accuracy of impedance matching network placed at the input and output sides of amplifier.Agilent Advance Design System(ADS) is used for the design and simulation purpose.Further the layout of design is developed on the FR4 substrate.展开更多
In order to enhance the area throughput of next generation wireless local area network(WLAN)in high density scenarios,orthogonal frequency division multiple access(OFDMA)has been adopted as one of the key technologies...In order to enhance the area throughput of next generation wireless local area network(WLAN)in high density scenarios,orthogonal frequency division multiple access(OFDMA)has been adopted as one of the key technologies in the next generation WLAN communication standards.However,the performance of the existing media access control(MAC)degrades significantly under unsaturated services.Therefore,this paper proposes a multi-user parallel contention channel MAC(MU-MAC)based on unsaturated services,which can effectively reduce the channel access conflict and improve the OFDMA access efficiency of cluster member nodes.On this basis,MU-MAC is enhanced for the spatial clustering group(SCG)formation protocol and support for the unsaturated service characteristics.Further,the optimal access radius when the service is in a non-saturated state is analyzed to make the relevant theoretical analysis more generally,and the expressions for the throughput and area throughput of the proposed protocol are modeled and derived.The simulation results verify the correctness of the theoretical analysis and the efficiency of the protocol performance.The results show that MU-MAC outperforms IEEE 802.11ax and OMAX protocol in area throughput by 40.72%and 104.15%,respectively.展开更多
Sensing in wireless local area network(WLAN) gains great interests recently. In this paper we focus on the multi-user WLAN sensing problem under the existing 802.11 standards. Multiple stations perform sensing with th...Sensing in wireless local area network(WLAN) gains great interests recently. In this paper we focus on the multi-user WLAN sensing problem under the existing 802.11 standards. Multiple stations perform sensing with the access point and transmit channel state information(CSI)report simultaneously on the basis of uplink-orthogonal frequency division multiple access(OFDMA). Considering the transmission resource consumed in CSI report and the padding wastage in OFDMA based CSI report, we optimize the CSI simplification and uplink resource unit(RU)allocation jointly, aiming to balance the sensing accuracy and padding wastage performances in WLAN sensing. We propose the minimize padding maximize efficiency(MPME) algorithm to solve the problem and evaluate the performance of the proposed algorithm through extensive simulations.展开更多
文摘A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz absolute bandwidth and 142.7% relative bandwidth covering from 3.38 GHz to 20 GHz with voltage standing wave ratio (VSWR) below two. A quasi-omnidirectional and quasi-symmetrical radiation pattern in H plane is obtained in the whole bandwidth. The high performance of the antenna is validated with measured and simulated results given. The antenna can be applied for the system design of UWB wireless communication.
基金supported by the National Natural Science Foundations of China (Nos.61572435,61472305, 61473222)the Ningbo Natural Science Foundations(Nos. 2016A610035,2017A610119)+1 种基金the Complex Electronic System Simulation Laboratory (No.DXZT-JC-ZZ-2015015)the Joint Fund of China State Shipbuilding Corporation(No.6141B03010103)
文摘For wired local area networks(LANs),their effectiveness and invulnerability are very critical.It is extraordinarily significant to evaluate the network performance effectively in the design of a reasonable network topology and the performance improvement of the networks.However,there are many factors affecting the performance of the networks,and the relation among them is also complicated.How to evaluate the performance of the wired LANs more accurately has been a heavy challenge in the network research.In order to solve the problem,this paper presents a performance evaluation method that evaluates the effectiveness and invulnerability of the wired LANs.Compared to traditional statistical methods,it has the distinct advantage of being able to handle several dependent variables simultaneously and tolerates the measurement errors among these independent variables and dependent variables.Finally,the rationality and validity of this method are verified by the extensive experimental simulation.
基金supported by the National Key Research and Development Plan under grant No. 2016YFB0502000
文摘Indoor positioning systems have been sufficiently researched to provide location information of persons and devices.This paper is focused on the current research and further development of indoor positioning.The standard evolution and industry development are summarized.There are various positioning systems according to the scenarios,cost and accuracy.However,there is a basic positioning system framework including information extraction,measurement and calculation.In particular,the detailed positioning technologies mainly including cellular positioning and Local Area Network(LAN) positioning are listed and compared to provide a reference for practical applications.Finally,we summarize the challenges of indoor positioning and give a3-phase evolution route.
基金supported by the National Natural Science Foundation of China(Grant no. 61202399,61571063)
文摘This work is about the development of a super low noise amplifier with minimum power consumption and high gain for several wireless applications.The amplifier operates at frequency bands of 0.9-2.4 GHz and can be used in many applications like Wireless local area network(WLAN),WiFi,Bluetooth,ZigBee and Global System for mobile communications(GSM).This new design can be employed for the IEEE 802.15.4 standard in industrial,scientific and medical(ISM) Band.The enhancement mode pseudomorphic high electron mobility transistor PHEMT is used here due to its high linearity,better performance and less noisy operation.The common source inductive degeneration method is employed here to enhance the gain of amplifier.The amplifier produces a gain of more than 17 dB and noise figure of about 0.5 dB.The lower values of S11 and S22 reflect the accuracy of impedance matching network placed at the input and output sides of amplifier.Agilent Advance Design System(ADS) is used for the design and simulation purpose.Further the layout of design is developed on the FR4 substrate.
基金supported by the 13th Five-Year National Key Research and Development Plan of China (2016YFD0300609)the Outstanding Science and Technology Innovation Talents Program of Henan province (184200510008)+4 种基金Modern Agricultural Technology System Project of Henan Province (S2010-01G04)the National Key Research and Development Program of China (2017YFD0301105)the National Natural Science Foundations of CHINA (Grant No. 61501373, No. 61771390, No. 61771392, No. 61871322, and No. 61271279)the Henan Province Key Scientific and Technological Project (182102110291 and 222102110234)Natural Science Foundation of Henan Province (232300420186)
文摘In order to enhance the area throughput of next generation wireless local area network(WLAN)in high density scenarios,orthogonal frequency division multiple access(OFDMA)has been adopted as one of the key technologies in the next generation WLAN communication standards.However,the performance of the existing media access control(MAC)degrades significantly under unsaturated services.Therefore,this paper proposes a multi-user parallel contention channel MAC(MU-MAC)based on unsaturated services,which can effectively reduce the channel access conflict and improve the OFDMA access efficiency of cluster member nodes.On this basis,MU-MAC is enhanced for the spatial clustering group(SCG)formation protocol and support for the unsaturated service characteristics.Further,the optimal access radius when the service is in a non-saturated state is analyzed to make the relevant theoretical analysis more generally,and the expressions for the throughput and area throughput of the proposed protocol are modeled and derived.The simulation results verify the correctness of the theoretical analysis and the efficiency of the protocol performance.The results show that MU-MAC outperforms IEEE 802.11ax and OMAX protocol in area throughput by 40.72%and 104.15%,respectively.
基金supported in part by Sichuan Science and Technology Program (Nos. 2022NSFSC0912, 2020YJ0218,2021YFQ056 and 2022YFG0170)Fundamental Research Funds for the Central Universities (Nos. 2682021ZTPY051and 2682021CF019)+2 种基金NSFC (No. 62071393)NSFC High-Speed Rail Joint Foundation (No. U1834210)111 Project 111-2-14。
文摘Sensing in wireless local area network(WLAN) gains great interests recently. In this paper we focus on the multi-user WLAN sensing problem under the existing 802.11 standards. Multiple stations perform sensing with the access point and transmit channel state information(CSI)report simultaneously on the basis of uplink-orthogonal frequency division multiple access(OFDMA). Considering the transmission resource consumed in CSI report and the padding wastage in OFDMA based CSI report, we optimize the CSI simplification and uplink resource unit(RU)allocation jointly, aiming to balance the sensing accuracy and padding wastage performances in WLAN sensing. We propose the minimize padding maximize efficiency(MPME) algorithm to solve the problem and evaluate the performance of the proposed algorithm through extensive simulations.