期刊文献+
共找到108篇文章
< 1 2 6 >
每页显示 20 50 100
基于LLE-DBSCAN-SMOTE数据处理的隧洞岩爆预测 被引量:2
1
作者 范成强 夏元友 +1 位作者 张宏伟 黄建 《中国安全科学学报》 CSCD 北大核心 2024年第12期140-148,共9页
为解决岩爆预测中预测指标关联以及原始数据存在离群点与数据不平衡等问题,提出基于局部线性嵌入(LLE)-基于密度的带噪声应用空间聚类(DBSCAN)-合成少数类过采样(SMOTE)数据处理的岩爆预测方法。首先,选取围岩最大切向应力σ_(θ)、岩... 为解决岩爆预测中预测指标关联以及原始数据存在离群点与数据不平衡等问题,提出基于局部线性嵌入(LLE)-基于密度的带噪声应用空间聚类(DBSCAN)-合成少数类过采样(SMOTE)数据处理的岩爆预测方法。首先,选取围岩最大切向应力σ_(θ)、岩石单轴抗压强度σ_(c)、岩石单轴抗拉强度σ_(t)、弹性应变能指数W_(et)、脆性系数σ_(c)/σ_(t)、应力系数σ_(θ)/σ_(c)和表征围岩应力梯度的应力集度值β构建岩爆预测指标体系;其次,采用LLE算法进行数据降维处理以消除指标间的交叉关联影响,引入DBSCAN算法去除数据离群点;然后,引入SMOTE技术进行数据平衡化;最后,分别采用决策树(DT)、随机森林(RF)与梯度提升树(GBDT)算法构建3类岩爆预测模型,对比分析数据处理前后数据训练模型的预测精度,并通过江边水电站引水隧洞实测岩爆数据进行工程验证。结果表明:预测指标由原始数据的7维降至4维,以及采用分级离群值处理后的3类算法模型的预测准确率皆为同类模型中最高,江边水电站工程岩爆预测验证了数据处理后的模型预测准确率明显高于基于原始岩爆数据建立的同类模型。 展开更多
关键词 局部线性嵌入(lle) 基于密度的带噪声应用空间聚类(DBSCAN) 合成少数类过采样(SMOTE) 数据处理 岩爆预测
在线阅读 下载PDF
联合局部线性嵌入与深度强化学习的RIS-MISO下行和速率优化
2
作者 孙俊 杨俊龙 +2 位作者 杨青青 胡明志 吴紫仪 《电子与信息学报》 北大核心 2025年第7期2117-2126,共10页
智能反射面(RIS)因其能调节电磁波的相位和幅度,被视为下一代无线通信的关键技术而被广泛研究。在RIS辅助多输入单输出(MISO)的通信系统中,信道状态维度随用户数量的增加呈平方级增长,导致深度强化学习(DRL)智能体在高维状态空间下面临... 智能反射面(RIS)因其能调节电磁波的相位和幅度,被视为下一代无线通信的关键技术而被广泛研究。在RIS辅助多输入单输出(MISO)的通信系统中,信道状态维度随用户数量的增加呈平方级增长,导致深度强化学习(DRL)智能体在高维状态空间下面临训练开销大的挑战。针对此问题,该文提出一种基于局部线性嵌入(LLE)和软动作评论(SAC)的联合优化算法,通过随机搜索算法和LLE对信道状态进行降维,并将低维状态作为SAC算法的输入,联合优化基站波束成形与RIS相位偏移,最大化MISO系统的下行和速率。仿真结果表明,在用户数为40的场景下,所提算法在维持与SAC相当的和速率性能的同时,训练时间减少了18.3%,计算资源消耗降低了64.8%。且随着用户规模的扩大,算法的训练开销进一步下降,充分验证了其有效性。 展开更多
关键词 智能反射面 局部线性嵌入 深度强化学习 和速率 训练开销
在线阅读 下载PDF
基于概率模型与信息熵的局部线性嵌入算法
3
作者 刘远红 毋毓斌 《计算机科学》 北大核心 2025年第S1期643-650,共8页
局部线性嵌入算法采用欧氏距离选择邻域点,这通常会损失数据集本身的非线性特征,造成邻域点选取错误,且仅使用欧氏距离构造权重会导致信息挖掘不充分。针对以上问题,提出基于概率模型与信息熵的局部线性嵌入算法(Probability informatio... 局部线性嵌入算法采用欧氏距离选择邻域点,这通常会损失数据集本身的非线性特征,造成邻域点选取错误,且仅使用欧氏距离构造权重会导致信息挖掘不充分。针对以上问题,提出基于概率模型与信息熵的局部线性嵌入算法(Probability information entropy-LLE,PIE-LLE)。首先,为了使邻域点选择更加合理,从数据集的概率分布角度出发,考虑样本点及其邻域的概率分布,为样本点构造符合局部分布的邻域集合。其次,为了充分提取样本的局部结构信息,在权重构造阶段,分别计算样本所属邻域概率以及每个样本的信息熵,融合二者信息重构低维样本。最后,在两个轴承故障数据集上的实验表明,所提方法故障识别准确度最高达到了100%,高于其他对比算法;在邻域点个数5~15范围内,PIE-LLE算法展现出良好的低维可视化效果;在参数敏感性实验中,该算法可以保持Fisher指标较大,有效提高了算法的分类准确度和稳定性。 展开更多
关键词 局部线性嵌入算法 概率模型 信息熵 特征提取 故障诊断
在线阅读 下载PDF
基于正交迭代的增量LLE算法 被引量:11
4
作者 朱明旱 罗大庸 +1 位作者 易励群 王一军 《电子学报》 EI CAS CSCD 北大核心 2009年第1期132-136,共5页
LLE(Locally Linear Embedding)算法是一种较好的流形学习算法,但它只能以批处理的方式进行.只要有新的样本加入,就必须重作该算法的全部内容,而原处理结果被全部丢弃.本文提出了一种基于正交迭代的增量LLE算法,能有效地利用前面的处理... LLE(Locally Linear Embedding)算法是一种较好的流形学习算法,但它只能以批处理的方式进行.只要有新的样本加入,就必须重作该算法的全部内容,而原处理结果被全部丢弃.本文提出了一种基于正交迭代的增量LLE算法,能有效地利用前面的处理结果,实现增量处理.实验表明该算法是有效的. 展开更多
关键词 局部线性嵌入 流形学习 正交迭代 增量
在线阅读 下载PDF
基于分维LLE和Fisher判别的故障诊断方法 被引量:13
5
作者 张伟 周维佳 李斌 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第2期325-333,共9页
针对非线性系统故障诊断难以解决的问题,通过改进的局部线性嵌入映射算法解决了非线性数据的特征映射问题。首先,通过线性拟合改进了基于分形维估计的内在维数的估计。然后,将故障状态与空间分布结合起来,通过确定数据点在空间超球内的... 针对非线性系统故障诊断难以解决的问题,通过改进的局部线性嵌入映射算法解决了非线性数据的特征映射问题。首先,通过线性拟合改进了基于分形维估计的内在维数的估计。然后,将故障状态与空间分布结合起来,通过确定数据点在空间超球内的分布完成故障的检测,在这个过程中将超球的确定与LLE算法中基于核函数的样本外数据扩展结合起来,大大减少了计算量,提高了算法的实时性。然后,利用Fisher判别分析进行故障匹配,通过计算最优的投影向量与历史故障数据投影向量的相似度的计算,完成故障识别,从而为复杂非线性系统故障诊断提供了一种新的有效的方法。 展开更多
关键词 局部线性嵌入(lle) 故障诊断 非线性降维 内在维数 FISHER判别
在线阅读 下载PDF
基于LLE和BP神经网络的人脸识别 被引量:6
6
作者 吴俊强 周激流 +1 位作者 何坤 郎方年 《激光杂志》 CAS CSCD 北大核心 2006年第5期71-73,共3页
利用LLE非线性降维方法提取人脸特征,然后将提取出来的特征输入到BP神经网络进行训练得到人脸类间的判别信息,进行人脸识别。利用LLE降维方法既能够降低数据维数,减少运算量,又很好的保留了各类人脸样本的拓扑结构,避免人脸图像光照、... 利用LLE非线性降维方法提取人脸特征,然后将提取出来的特征输入到BP神经网络进行训练得到人脸类间的判别信息,进行人脸识别。利用LLE降维方法既能够降低数据维数,减少运算量,又很好的保留了各类人脸样本的拓扑结构,避免人脸图像光照、姿态等因素对人脸识别的影响。在ORL人脸库上的实验结果表明了,这种方法是有效的。 展开更多
关键词 局部线性嵌入:lle 非线性降维 BP神经网络 人脸识别
在线阅读 下载PDF
自组织LLE算法及其在人脸识别中的应用 被引量:5
7
作者 冯海亮 李见为 黄鸿 《光学精密工程》 EI CAS CSCD 北大核心 2008年第9期1732-1737,共6页
提出了一种改进了的自组织LLE算法(SO—LLE),该算法不仅能自动确定数据点邻域值、减少运算量,而且能有效地发现嵌入于高维人脸图像的低维子流形。对SO-LLE算法进行了详细的理论分析,并应用多种数据集进行了仿真实验。在Yale和PIE... 提出了一种改进了的自组织LLE算法(SO—LLE),该算法不仅能自动确定数据点邻域值、减少运算量,而且能有效地发现嵌入于高维人脸图像的低维子流形。对SO-LLE算法进行了详细的理论分析,并应用多种数据集进行了仿真实验。在Yale和PIE人脸数据库的仿真实验结果表明:SO—LLE方法的平均识别率提高了5%~40%,有效地提高了人脸识别的性能。 展开更多
关键词 人脸识别 流形学习 局部线性嵌入 自组织映射
在线阅读 下载PDF
一种基于LLE特征融合的故障识别方法 被引量:4
8
作者 胡建中 吴瑶 谢小欣 《中国机械工程》 EI CAS CSCD 北大核心 2013年第24期3345-3348,共4页
针对传统的故障识别中未能充分利用特征信息的问题,提出一种基于局部线性嵌入(LLE)特征融合的故障识别方法,通过初步提取信号时域和时频域的特征获得原始特征集,利用LLE算法对原始特征集进行二次特征提取,进一步融合两组特征集并使用KN... 针对传统的故障识别中未能充分利用特征信息的问题,提出一种基于局部线性嵌入(LLE)特征融合的故障识别方法,通过初步提取信号时域和时频域的特征获得原始特征集,利用LLE算法对原始特征集进行二次特征提取,进一步融合两组特征集并使用KNN算法进行故障识别。仿真信号数据分析与实际故障分析证明了所提方法对故障样本识别的可行性和有效性。 展开更多
关键词 特征提取 局部线性嵌入(lle) 特征融合 故障识别
在线阅读 下载PDF
LLE重构和SVD分解的地震信号降噪方法 被引量:4
9
作者 崔业勤 高建国 丁国超 《计算机工程与应用》 CSCD 北大核心 2016年第15期266-270,共5页
针对现有地震信号降噪方法处理地震剖面的弯曲同相轴效果不佳,提出联合局部线性嵌入(LLE)和奇异值分解(SVD)方法的地震信号降噪技术。利用LLE的重构思想,对地震数据采样点用其近邻进行重构,实现非线性模式的弯曲同相轴的线性化处理,并... 针对现有地震信号降噪方法处理地震剖面的弯曲同相轴效果不佳,提出联合局部线性嵌入(LLE)和奇异值分解(SVD)方法的地震信号降噪技术。利用LLE的重构思想,对地震数据采样点用其近邻进行重构,实现非线性模式的弯曲同相轴的线性化处理,并去除一定程度的随机噪声;根据地震资料有效信号具有良好相关性的特性,采用SVD分解对LLE重构后的地震数据进行有效信号和噪声分离,剔除不相干的噪声,最终实现地震数据的随机噪声压制。在正演模型和真实地震资料上进行了实验,实验结果表明:与传统SVD方法相比,提出的方法很好地消除了随机噪声,有效信号基本上无丢失。 展开更多
关键词 局部线性嵌入 奇异值分解 重构 分解 地震信号 去噪
在线阅读 下载PDF
基于LLE的分类算法及其在被动毫米波目标识别中的应用 被引量:4
10
作者 罗磊 李跃华 《电子与信息学报》 EI CSCD 北大核心 2010年第6期1306-1310,共5页
该文针对模式识别中的单类分类问题,根据LLE算法思想,考虑数据分布的低维流形,提出了一种单类分类算法。基于流形学习算法发现了被动毫米波信号的短时傅里叶谱中低维流形的存在,并讨论了其特性。将新算法应用于被动毫米波金属目标识别,... 该文针对模式识别中的单类分类问题,根据LLE算法思想,考虑数据分布的低维流形,提出了一种单类分类算法。基于流形学习算法发现了被动毫米波信号的短时傅里叶谱中低维流形的存在,并讨论了其特性。将新算法应用于被动毫米波金属目标识别,相对目前流行的分类算法,取得了更好的效果,且算法对输入参数不敏感,在数据混叠程度较高时仍有很好的鲁棒性。 展开更多
关键词 目标识别 毫米波 流形学习 局部线性嵌入 单类分类
在线阅读 下载PDF
基于LLE与BA-Elman的瓦斯涌出量动态预测研究 被引量:4
11
作者 付华 代巍 《传感技术学报》 CAS CSCD 北大核心 2016年第9期1383-1388,共6页
针对瓦斯涌出量受诸多因素影响,彼此间存在复杂的非线性关系导致预测精度不高这一问题,提出基于相关分析理论和局部线性嵌入理论的Elman网络瓦斯涌出量动态预测方法。在对监测指标进行相关性分析的基础上,用局部线性嵌入理论实现瓦斯涌... 针对瓦斯涌出量受诸多因素影响,彼此间存在复杂的非线性关系导致预测精度不高这一问题,提出基于相关分析理论和局部线性嵌入理论的Elman网络瓦斯涌出量动态预测方法。在对监测指标进行相关性分析的基础上,用局部线性嵌入理论实现瓦斯涌出量影响因素从高维空间至低维空间的映射,进而重构影响瓦斯涌出量的有效因子,并将其作为Elman网络预测模型的输入矢量,以降低模型结构的复杂度,同时用蝙蝠算法全局优化Elman模型以提高预测的精度和泛化能力。试验结果表明该动态预测模型泛化能力强,预测精度高,适用于实际工作中对瓦斯涌出量的预测。 展开更多
关键词 瓦斯涌出量 动态预测 相关分析 局部线性嵌入理论 蝙蝠算法 ELMAN神经网络
在线阅读 下载PDF
基于Semi-Supervised LLE的人脸表情识别方法 被引量:1
12
作者 冯海亮 黄鸿 +1 位作者 李见为 魏明 《沈阳建筑大学学报(自然科学版)》 EI CAS 2008年第6期1109-1113,共5页
目的为提取有效的鉴别特征和降低鉴别向量的维数来识别人脸表情图像.方法将流行学习(Manifold learning,ML)和半监督学习(Semi-Supervised learning,SSL)结合起来,利用人脸表情图像数据本身的非线性流形结构信息和部分标签信息来调整点... 目的为提取有效的鉴别特征和降低鉴别向量的维数来识别人脸表情图像.方法将流行学习(Manifold learning,ML)和半监督学习(Semi-Supervised learning,SSL)结合起来,利用人脸表情图像数据本身的非线性流形结构信息和部分标签信息来调整点与点之间的距离形成距离矩阵,而后基于被调整的距离矩阵进行线性近邻重建来实现维数约简,提取低维鉴别特征用于人脸表情识别.结果该方法能充分利用数据的结构信息和有限的标签信息,使具有标签信息的同类样本之间的距离最小化,不同类数据之间的距离最大化,进而可以有效地提取数据的低维鉴别子流形,使得分类性能要优于非监督的维数约简方法.结论笔者提出的半监督局部线性嵌入算法能有效地提高人脸表情识别的性能. 展开更多
关键词 流形学习 半监督学习 局部线性嵌入 维数约简 人脸表情识别
在线阅读 下载PDF
基于VFW和LLE的视频图像处理与特征提取技术 被引量:1
13
作者 王刚 周激流 +3 位作者 吴俊强 琚生根 张力支 吴慧琳 《计算机应用与软件》 CSCD 北大核心 2008年第12期24-26,共3页
结合人脸考勤系统项目实例介绍了用VFW(Video for Windows)实现视频图像采集、编辑和LLE(Locally Linear Enbed-ding)对采集的图像进行特征提取技术,并利用该技术建立了SCU_TS人脸库。结果表明,该技术实用、可靠,为视频应用程序的开发... 结合人脸考勤系统项目实例介绍了用VFW(Video for Windows)实现视频图像采集、编辑和LLE(Locally Linear Enbed-ding)对采集的图像进行特征提取技术,并利用该技术建立了SCU_TS人脸库。结果表明,该技术实用、可靠,为视频应用程序的开发提供了一种行之有效的方法。 展开更多
关键词 视频流 视频采集 单帧图像 VFW库 lle 人脸库
在线阅读 下载PDF
利用LLE和PCA方法提高地震数据信噪比 被引量:1
14
作者 李瑛 杨丽娟 张春娥 《控制工程》 CSCD 北大核心 2016年第11期1779-1783,共5页
地震数据具有高维特性,而现有的地震数据去噪方法难以处理高维空间的非线性模式数据,如地震剖面的弯曲同相轴。为此,提出利用局部线性嵌入(LLE)和主成分分析(PCA)方法对含有非线性模式的地震数据进行去噪处理。首先,利用LLE重构方式对... 地震数据具有高维特性,而现有的地震数据去噪方法难以处理高维空间的非线性模式数据,如地震剖面的弯曲同相轴。为此,提出利用局部线性嵌入(LLE)和主成分分析(PCA)方法对含有非线性模式的地震数据进行去噪处理。首先,利用LLE重构方式对地震图像采样点用其近邻进行重建;然后,利用PCA分解对LLE重构后的地震图像进行有效信号和噪声分离,去除不相关的噪声。最后,在正演模型和真实地震资料上的实验结果表明,提出的方法有效地消除了随机噪声。 展开更多
关键词 局部线性嵌入 主成分分析 地震图像 信噪比 重建
在线阅读 下载PDF
基于改进LLE的高维数据离散化方法 被引量:2
15
作者 许统德 《计算机科学》 CSCD 北大核心 2015年第S1期146-150 157,157,共6页
连续特征值离散化在数据挖掘、机器学习和模式识别等领域显得尤为重要。目前,现有的离散化方法主要处理低维数据,然而,现实世界中往往存在的是高维非线性数据。基于此,提出一种基于改进局部线性嵌入(LLE)的高维数据离散化方法——ILLE-... 连续特征值离散化在数据挖掘、机器学习和模式识别等领域显得尤为重要。目前,现有的离散化方法主要处理低维数据,然而,现实世界中往往存在的是高维非线性数据。基于此,提出一种基于改进局部线性嵌入(LLE)的高维数据离散化方法——ILLE-HD3方法。首先,通过考虑数据的类信息对LLE方法进行改进,使其有效降维,以便于数据在低维空间中离散化。其次,在降维的基础上,提出了基于差异-相似集合(DSS)的连续特征值离散化算法,该算法利用类与特征之间的关联程度来决定连续域中断点的选取位置,并通过DSS理论定义分类错误标准,以控制连续域划分过程中产生的信息损失。最后,使用决策树分类工具C4.5和C5.0进行性能分析,结果表明,提出的ILLEHD3方法处理高维非线性数据时具有较好的效果,与现有的方法相比,得到了较高的分类精度。 展开更多
关键词 高维数据 局部线性嵌入 离散化 类-特征相互关联 差异-相似集合
在线阅读 下载PDF
基于FastICA-SLLE的转子系统故障诊断研究 被引量:2
16
作者 李强 皮智谋 《组合机床与自动化加工技术》 北大核心 2014年第8期105-107,118,共4页
提出了基于快速独立分量分析(FastICA)和监督局部线性嵌入算法(SLLE)相结合的转子系统故障诊断的方法。采用快速独立分量对多通道传感器信号进行盲源分离,采用监督局部线性嵌入算法对振动信号数据进行降维处理和故障特征量提取,最后将S... 提出了基于快速独立分量分析(FastICA)和监督局部线性嵌入算法(SLLE)相结合的转子系统故障诊断的方法。采用快速独立分量对多通道传感器信号进行盲源分离,采用监督局部线性嵌入算法对振动信号数据进行降维处理和故障特征量提取,最后将SLLE提取的故障特征量作为支持向量机(SVM)的输入,建立系统故障诊断模型。实验结果表明该方法能够有效地识别转子系统故障,与ICA-MLP、ICA-SVM方法相比,分类精度得到较大的提高,而故障辨识时间则相对较少。 展开更多
关键词 故障诊断 快速独立分量分析 监督局部线性嵌入算法
在线阅读 下载PDF
基于LLE的边缘保持图像平滑算法 被引量:1
17
作者 龙建武 王雪梅 《计算机应用研究》 CSCD 北大核心 2023年第11期3467-3471,3484,共6页
现有全局优化算法都使用不同范数约束输出图像梯度来实现图像平滑,但会牺牲图像中的弱结构信息来达到较好的平滑性能,导致输出图像出现颜色失真和细节模糊的情况。针对上述问题,提出一种基于LLE的边缘保持图像平滑算法(edge preserving ... 现有全局优化算法都使用不同范数约束输出图像梯度来实现图像平滑,但会牺牲图像中的弱结构信息来达到较好的平滑性能,导致输出图像出现颜色失真和细节模糊的情况。针对上述问题,提出一种基于LLE的边缘保持图像平滑算法(edge preserving image smoothing algorithm based on LLE,Ep-LLE),引入局部线性嵌入(LLE)的思想作为优化函数的正则化项并采用L_(2)范数进行惩罚。该方法利用图像局部区域内像素存在的相互关系,通过约束局部相似以实现图像平滑任务。最后通过各个算法的实验对比验证,基于LLE的边缘保持图像平滑算法能在实现图像边缘保持平滑的同时,保留图像局部结构特征,并有效避免区域内颜色一致导致的边缘阶梯状现象,避免图像颜色失真。 展开更多
关键词 局部线性嵌入 L_(2)范数 边缘保持 图像平滑
在线阅读 下载PDF
基于局部线性嵌入的制造过程多重共线性参数特征选择
18
作者 胡胜 高冰冰 +1 位作者 张溪 刘登基 《中国机械工程》 北大核心 2025年第6期1238-1246,共9页
针对制造过程中参数众多易引发多重共线性,致使质量指标预测不准确的问题,提出了一种基于局部线性嵌入(LLE)的制造过程多重共线性参数特征选择方法。首先诊断制造过程参数的多重共线性问题,再用最小绝对收缩和选择算子(LASSO)回归方法... 针对制造过程中参数众多易引发多重共线性,致使质量指标预测不准确的问题,提出了一种基于局部线性嵌入(LLE)的制造过程多重共线性参数特征选择方法。首先诊断制造过程参数的多重共线性问题,再用最小绝对收缩和选择算子(LASSO)回归方法将其消除;然后用LLE算法对LASSO回归后的参数做特征选择,获得彼此独立的特征空间,并将其输入到鲸鱼优化支持向量机模型(WOA-SVM)中验证所提算法的参数特征选择效果;最后通过案例分析验证了所提方法的有效性。结果显示,与原始数据相比,采用所提出的方法能够在更低的特征空间维度下获取更精确的预测效果,相关系数值高达0.9702,特征选择的准确率增加了24.989%。 展开更多
关键词 制造过程 多重共线性 局部线性嵌入 特征选择
在线阅读 下载PDF
基于改进的LLE和FSVM方法在人脸识别中的应用
19
作者 尹方平 《科学技术与工程》 北大核心 2012年第34期9390-9395,共6页
针对人脸识别问题,提出了一种新的算法。该算法首先用gabor小波对人脸图像进行特征提取。然后采用LLE算法进行降维。最后用FSVM和三叉决策树相结合设计识别分类器进行人脸识别。在降维的过程中,针对高维空间相似性度量函数和自适应参数... 针对人脸识别问题,提出了一种新的算法。该算法首先用gabor小波对人脸图像进行特征提取。然后采用LLE算法进行降维。最后用FSVM和三叉决策树相结合设计识别分类器进行人脸识别。在降维的过程中,针对高维空间相似性度量函数和自适应参数选取方法上,对LLE算法进行了改进。在ORL人脸数据库的仿真结果表明,该算法能有效提高人脸识别性能,具有较高识别率。 展开更多
关键词 人脸识别 局部线性嵌入 模糊支持向量机 GABOR滤波
在线阅读 下载PDF
基于稀疏约束的LLE改进算法 被引量:3
20
作者 孙洋 叶庆卫 +1 位作者 王晓东 周宇 《计算机工程》 CAS CSCD 2013年第5期53-56,60,共5页
局部线性嵌入(LLE)算法可以发现隐藏在高维空间中的局部线性低维流形,实现数据降维,而LLE算法对数据噪声比较敏感,在较强噪声下算法稳定性很差。为此,提出一种基于稀疏约束的改进算法,在计算重构误差的表达式后添加L1范数的惩罚性约束,... 局部线性嵌入(LLE)算法可以发现隐藏在高维空间中的局部线性低维流形,实现数据降维,而LLE算法对数据噪声比较敏感,在较强噪声下算法稳定性很差。为此,提出一种基于稀疏约束的改进算法,在计算重构误差的表达式后添加L1范数的惩罚性约束,促使最优重构权值矩阵更具有稀疏性。通过正则化处理,把添加稀疏约束的重构误差最优化目标函数变换成一般二次规划问题,引入内点迭代法快速搜索最优解。仿真实验结果表明,在不同噪声影响下,稀疏约束的改进LLE算法的降维效果明显好于经典LLE算法,具有更强的噪声抵抗能力。 展开更多
关键词 稀疏约束 局部线性嵌入 流形学习 鲁棒性 L1范数 内点迭代法
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部