期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
A Privacy-Preserving Mechanism Based on Local Differential Privacy in Edge Computing 被引量:9
1
作者 Mengnan Bi Yingjie Wang +1 位作者 Zhipeng Cai Xiangrong Tong 《China Communications》 SCIE CSCD 2020年第9期50-65,共16页
With the development of Internet of Things(IoT),the delay caused by network transmission has led to low data processing efficiency.At the same time,the limited computing power and available energy consumption of IoT t... With the development of Internet of Things(IoT),the delay caused by network transmission has led to low data processing efficiency.At the same time,the limited computing power and available energy consumption of IoT terminal devices are also the important bottlenecks that would restrict the application of blockchain,but edge computing could solve this problem.The emergence of edge computing can effectively reduce the delay of data transmission and improve data processing capacity.However,user data in edge computing is usually stored and processed in some honest-but-curious authorized entities,which leads to the leakage of users’privacy information.In order to solve these problems,this paper proposes a location data collection method that satisfies the local differential privacy to protect users’privacy.In this paper,a Voronoi diagram constructed by the Delaunay method is used to divide the road network space and determine the Voronoi grid region where the edge nodes are located.A random disturbance mechanism that satisfies the local differential privacy is utilized to disturb the original location data in each Voronoi grid.In addition,the effectiveness of the proposed privacy-preserving mechanism is verified through comparison experiments.Compared with the existing privacy-preserving methods,the proposed privacy-preserving mechanism can not only better meet users’privacy needs,but also have higher data availability. 展开更多
关键词 Io T edge computing local differential privacy Voronoi diagram privacy-PRESERVING
在线阅读 下载PDF
Privacy-Preserving Collaborative Filtering Algorithm Based on Local Differential Privacy
2
作者 Ting Bao Lei Xu +3 位作者 Liehuang Zhu Lihong Wang Ruiguang Li Tielei Li 《China Communications》 SCIE CSCD 2021年第11期42-60,共19页
Mobile edge computing(MEC)is an emerging technolohgy that extends cloud computing to the edge of a network.MEC has been applied to a variety of services.Specially,MEC can help to reduce network delay and improve the s... Mobile edge computing(MEC)is an emerging technolohgy that extends cloud computing to the edge of a network.MEC has been applied to a variety of services.Specially,MEC can help to reduce network delay and improve the service quality of recommendation systems.In a MEC-based recommendation system,users’rating data are collected and analyzed by the edge servers.If the servers behave dishonestly or break down,users’privacy may be disclosed.To solve this issue,we design a recommendation framework that applies local differential privacy(LDP)to collaborative filtering.In the proposed framework,users’rating data are perturbed to satisfy LDP and then released to the edge servers.The edge servers perform partial computing task by using the perturbed data.The cloud computing center computes the similarity between items by using the computing results generated by edge servers.We propose a data perturbation method to protect user’s original rating values,where the Harmony mechanism is modified so as to preserve the accuracy of similarity computation.And to enhance the protection of privacy,we propose two methods to protect both users’rating values and rating behaviors.Experimental results on real-world data demonstrate that the proposed methods perform better than existing differentially private recommendation methods. 展开更多
关键词 personalized recommendation collaborative filtering data perturbation privacy protection local differential privacy
在线阅读 下载PDF
Utility-Improved Key-Value Data Collection with Local Differential Privacy for Mobile Devices
3
作者 TONG Ze DENG Bowen +1 位作者 ZHENG Lele ZHANG Tao 《ZTE Communications》 2022年第4期15-21,共7页
The structure of key-value data is a typical data structure generated by mobile devices.The collection and analysis of the data from mobile devices are critical for service providers to improve service quality.Neverth... The structure of key-value data is a typical data structure generated by mobile devices.The collection and analysis of the data from mobile devices are critical for service providers to improve service quality.Nevertheless,collecting raw data,which may contain various per⁃sonal information,would lead to serious personal privacy leaks.Local differential privacy(LDP)has been proposed to protect privacy on the device side so that the server cannot obtain the raw data.However,existing mechanisms assume that all keys are equally sensitive,which can⁃not produce high-precision statistical results.A utility-improved data collection framework with LDP for key-value formed mobile data is pro⁃posed to solve this issue.More specifically,we divide the key-value data into sensitive and non-sensitive parts and only provide an LDPequivalent privacy guarantee for sensitive keys and all values.We instantiate our framework by using a utility-improved key value-unary en⁃coding(UKV-UE)mechanism based on unary encoding,with which our framework can work effectively for a large key domain.We then vali⁃date our mechanism which provides better utility and is suitable for mobile devices by evaluating it in two real datasets.Finally,some pos⁃sible future research directions are envisioned. 展开更多
关键词 key-value data local differential privacy mobile devices privacy-preserving data collection
在线阅读 下载PDF
满足本地差分隐私的混合噪音感知的模糊C均值聚类算法
4
作者 张朋飞 程俊 +4 位作者 张治坤 方贤进 孙笠 王杰 姜茸 《电子与信息学报》 北大核心 2025年第3期739-757,共19页
在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪... 在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪音,致使聚类精度低下。同时,对于衡量用户提交数据和簇心之间的距离选择较为武断,没有充分利用到用户提交的噪音数据中蕴含的噪音模式。为此,该文创新性地提出一种满足LDP的混合噪音感知的模糊C均值聚类算法(mnFCM),该算法的主要思想是同时建模用户上传数据中蕴含的表示用户质量的高斯噪音以及为保护用户数据注入的拉普拉斯噪音,进而设计出混合噪音感知的距离替代传统的欧式距离,来衡量样本数据与簇心间的相似性。特别地,在mnFCM中,该文首先设计了混合噪音感知的距离计算方法,在此基础上给出算法新的目标函数,并基于拉格朗日乘子法设计了求解方法,最后理论上分析了求解算法的收敛性。该文进一步理论分析了mnFCM的隐私、效用和复杂度,分析结果表明所提算法严格满足LDP、相对于对比算法更接近非隐私下的簇心以及和非隐私算法具有接近的复杂度。在两个真实数据集上的实验结果表明,mnFCM在满足LDP下,聚类精度提高了10%~15%。 展开更多
关键词 聚类分析 隐私保护 本地差分隐私 模糊C均值聚类 拉普拉斯机制
在线阅读 下载PDF
基于本地差分隐私的异步横向联邦安全梯度聚合方案
5
作者 魏立斐 张无忌 +2 位作者 张蕾 胡雪晖 王绪安 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期3010-3018,共9页
联邦学习作为一种新兴的分布式机器学习框架,通过在用户私有数据不出域的情况下进行联合建模训练,有效地解决了传统机器学习中的数据孤岛和隐私泄露问题。然而,联邦学习存在着训练滞后的客户端拖累全局训练速度的问题,异步联邦学习允许... 联邦学习作为一种新兴的分布式机器学习框架,通过在用户私有数据不出域的情况下进行联合建模训练,有效地解决了传统机器学习中的数据孤岛和隐私泄露问题。然而,联邦学习存在着训练滞后的客户端拖累全局训练速度的问题,异步联邦学习允许用户在本地完成模型更新后立即上传到服务端并参与到聚合任务中,而无需等待其他用户训练完成。然而,异步联邦学习也存在着无法识别恶意用户上传的错误模型,以及泄露用户隐私的问题。针对这些问题,该文设计一种面向隐私保护的异步联邦的安全梯度聚合方案(SAFL)。用户采用本地差分隐私策略,对本地训练的模型添加扰动并上传到服务端,服务端通过投毒检测算法剔除恶意用户,以实现安全聚合(SA)。最后,理论分析和实验表明在异步联邦学习的场景下,提出的方案能够有效识别出恶意用户,保护用户的本地模型隐私,减少隐私泄露风险,并相对于其他方案在模型的准确率上有较大的提升。 展开更多
关键词 安全聚合 本地差分隐私 隐私保护 恶意投毒攻击 异步联邦学习
在线阅读 下载PDF
个性化本地差分隐私机制的研究现状与展望
6
作者 朱友文 唐聪 +1 位作者 吴启晖 张焱 《南京航空航天大学学报》 CAS CSCD 北大核心 2024年第5期784-800,共17页
本地差分隐私作为一个优秀的隐私保护模型,被广泛应用于数据收集和统计分析中的隐私保护问题。但是本地差分隐私没有考虑不同用户的隐私需求差异以及不同数据的属性差异,因此作为本地差分隐私的一种变体,个性化本地差分隐私被提出。本... 本地差分隐私作为一个优秀的隐私保护模型,被广泛应用于数据收集和统计分析中的隐私保护问题。但是本地差分隐私没有考虑不同用户的隐私需求差异以及不同数据的属性差异,因此作为本地差分隐私的一种变体,个性化本地差分隐私被提出。本文根据上述两类差异将个性化本地差分隐私机制分为两类,并在此基础上对该领域的研究现状进行了分析和总结。首先本文介绍了个性化本地差分隐私的基本概念和理论模型。其次对近年来的个性化本地差分隐私机制的若干文献进行了分析和归类,并详细介绍了几种代表性方案的原理和特点,包括数据扰动方法和数据聚合方法等。最后本文对该领域的未来发展方向进行了讨论与分析。 展开更多
关键词 数据安全 个性化本地差分隐私 统计分析 隐私保护
在线阅读 下载PDF
基于Bloom Filter本地差分隐私的基数估计
7
作者 邱彩 王俊清 傅继彬 《科技创新与应用》 2024年第28期35-38,共4页
计算机技术和通信技术的共同发展,使得数据呈现指数大爆炸式的增长。数据中蕴含的巨大价值是有目共睹的。但是对数据集的肆意收集与分析,使用户的隐私数据处在被泄露的风险中。为保护用户的敏感数据的同时实现对基数查询的有效响应,提... 计算机技术和通信技术的共同发展,使得数据呈现指数大爆炸式的增长。数据中蕴含的巨大价值是有目共睹的。但是对数据集的肆意收集与分析,使用户的隐私数据处在被泄露的风险中。为保护用户的敏感数据的同时实现对基数查询的有效响应,提出一种基于差分隐私的隐私保护算法BFRRCE(Bloom Filter Random Response for Cardinality Estimation)。首先对用户的数据利用Bloom Filter数据结构进行数据预处理,然后利用本地差分隐私的扰动算法对数据进行扰动,达到保护用户敏感数据的目的。 展开更多
关键词 隐私保护 本地化差分隐私 Bloom Filter 基数 随机响应
在线阅读 下载PDF
基于本地差分隐私的K-modes聚类数据隐私保护方法 被引量:11
8
作者 张少波 原刘杰 +1 位作者 毛新军 朱更明 《电子学报》 EI CAS CSCD 北大核心 2022年第9期2181-2188,共8页
分类型数据聚类是数据挖掘的重要研究内容,聚类数据中通常包含用户一些敏感信息.为保护聚类数据中的用户隐私,当前主要采用基于可信第三方隐私保护模型,但现实中第三方也存在隐私泄露风险.针对此问题,该文引入本地差分隐私技术,提出一... 分类型数据聚类是数据挖掘的重要研究内容,聚类数据中通常包含用户一些敏感信息.为保护聚类数据中的用户隐私,当前主要采用基于可信第三方隐私保护模型,但现实中第三方也存在隐私泄露风险.针对此问题,该文引入本地差分隐私技术,提出一种去可信第三方的K-modes聚类数据隐私保护方法.该方法首先利用随机采样技术对数据进行采样,然后使用本地差分隐私技术对采样数据进行扰动,最后通过聚类服务端与用户的交互迭代完成聚类.在聚类过程中,无需可信第三方对数据进行隐私预处理,避免了第三方泄露用户隐私的风险.理论分析证明了该方法的隐私性和可行性,实验结果表明该方法在满足本地差分隐私机制的前提下保证了聚类结果的质量. 展开更多
关键词 隐私保护 本地差分隐私 数据挖掘 K-modes聚类 去可信第三方
在线阅读 下载PDF
基于本地化差分隐私和属性基可搜索加密的区块链数据共享方案 被引量:18
9
作者 冯涛 陈李秋 +1 位作者 方君丽 石建明 《通信学报》 EI CSCD 北大核心 2023年第5期224-233,共10页
针对传统基于云的数据共享方案依赖可信第三方、只关注数据隐私保护或访问控制问题,提出一种基于本地化差分隐私和属性基可搜索加密的区块链数据共享方案。将区块链和云服务器结合,链上链下协同存储数据,提供高效可靠防篡改的数据共享... 针对传统基于云的数据共享方案依赖可信第三方、只关注数据隐私保护或访问控制问题,提出一种基于本地化差分隐私和属性基可搜索加密的区块链数据共享方案。将区块链和云服务器结合,链上链下协同存储数据,提供高效可靠防篡改的数据共享。首先,引入本地化差分隐私对共享数据进行预处理,保证数据拥有者身份隐私的同时抵御不可信第三方攻击;其次,将可搜索加密技术和属性基加密结合,支持密文检索实现数据隐私保护、为共享数据提供细粒度访问控制;最后,通过安全性、正确性证明及实验分析证明所提方案满足安全目标。 展开更多
关键词 区块链 本地化差分隐私 数据共享 属性基可搜索加密 隐私保护
在线阅读 下载PDF
局部差分隐私约束的关联属性不变后随机响应扰动 被引量:8
10
作者 杨高明 朱海明 +1 位作者 方贤进 苏树智 《电子学报》 EI CAS CSCD 北大核心 2019年第5期1079-1085,共7页
本文研究敏感属性与部分准标识符属性存在相关时,如何有效减小重构攻击导致的隐私泄漏风险.首先,用互信息理论寻找原始数据集中对敏感属性具有强依赖关系的准标识符属性,为精确扰动数据属性提供理论依据;其次,针对关联属性和非关联属性... 本文研究敏感属性与部分准标识符属性存在相关时,如何有效减小重构攻击导致的隐私泄漏风险.首先,用互信息理论寻找原始数据集中对敏感属性具有强依赖关系的准标识符属性,为精确扰动数据属性提供理论依据;其次,针对关联属性和非关联属性,应用不变后随机响应方法分别对某个数据属性或者属性之间的组合进行扰动,使之满足局部ε-差分隐私要求,并理论分析后数据扰动对隐私泄露概率和数据效用的影响;最后,实验验证所提算法的有效性和处理增量数据的能力,理论分析了数据结果.由实验结果可知,算法可以更好地达到数据效用和隐私保护的平衡. 展开更多
关键词 局部差分隐私 不变后随机响应 数据重构 数据扰动 隐私保护
在线阅读 下载PDF
一种Hilbert编码的本地化位置隐私保护方法 被引量:6
11
作者 晏燕 董卓越 +1 位作者 徐飞 冯涛 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2023年第2期147-160,共14页
基于位置的各种大数据服务在为用户提供便利的同时,也导致了各种隐私泄露的风险。本地化差分隐私模型避免了对可信第三方数据收集平台的依赖,使得用户能够依据个人需求处理和保护敏感信息,因此更适用于位置隐私保护的场景。针对现有本... 基于位置的各种大数据服务在为用户提供便利的同时,也导致了各种隐私泄露的风险。本地化差分隐私模型避免了对可信第三方数据收集平台的依赖,使得用户能够依据个人需求处理和保护敏感信息,因此更适用于位置隐私保护的场景。针对现有本地化差分隐私位置保护方法编码机制复杂、位置数据可用性低等问题,提出一种基于希尔伯特编码的本地化差分隐私位置保护方法。用户端根据本地化差分隐私模型对自身所处网格的希尔伯特编码进行随机响应扰动处理,实现原始位置的隐私保护;服务器端收集大量用户的扰动位置编码并进行希尔伯特解码,进而判断用户所处的网格位置,实现对用户数量和分布密度的统计分析。通过实际位置数据集合上的实验证明,所提方法能够在实现用户位置本地化差分隐私保护的基础上提供更好的位置数据可用性和运行效率。 展开更多
关键词 位置服务 位置隐私 本地化差分隐私 希尔伯特编码 随机响应
在线阅读 下载PDF
基于联邦学习的本地化差分隐私机制研究 被引量:1
12
作者 任一支 刘容轲 +5 位作者 王冬 袁理锋 申延召 吴国华 王秋华 杨昌天 《电子与信息学报》 EI CSCD 北大核心 2023年第3期784-792,共9页
联邦学习与群体学习作为当前热门的分布式机器学习范式,前者能够保护用户数据不被第三方获得的前提下在服务器中实现模型参数共享计算,后者在无中心服务器的前提下利用区块链技术实现所有用户同等地聚合模型参数。但是,通过分析模型训... 联邦学习与群体学习作为当前热门的分布式机器学习范式,前者能够保护用户数据不被第三方获得的前提下在服务器中实现模型参数共享计算,后者在无中心服务器的前提下利用区块链技术实现所有用户同等地聚合模型参数。但是,通过分析模型训练后的参数,如深度神经网络训练的权值,仍然可能泄露用户的隐私信息。目前,在联邦学习下运用本地化差分隐私(LDP)保护模型参数的方法层出不穷,但皆难以在较小的隐私预算和用户数量下缩小模型测试精度差。针对此问题,该文提出正负分段机制(PNPM),在聚合前对本地模型参数进行扰动。首先,证明了该机制满足严格的差分隐私定义,保证了算法的隐私性;其次分析了该机制能够在较少的用户数量下保证模型的精度,保证了机制的有效性;最后,在3种主流图像分类数据集上与其他最先进的方法在模型准确性、隐私保护方面进行了比较,表现出了较好的性能。 展开更多
关键词 隐私保护 联邦学习 本地化差分隐私 区块链
在线阅读 下载PDF
面向频繁序列的局部差分隐私保护研究 被引量:1
13
作者 杨高明 龚晨 +2 位作者 方贤进 葛斌 苏树智 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2019年第11期1903-1910,共8页
为增强频繁序列的隐私保护力度,提高其挖掘效用和降低数据维度的影响,本文提出满足局部差分隐私的频繁序列挖掘模型,设计算法予以实现。该算法采用剪枝思想获取频繁序列,利用随机响应方法在局部敏感度基础上干扰数据集,并利用序列支持... 为增强频繁序列的隐私保护力度,提高其挖掘效用和降低数据维度的影响,本文提出满足局部差分隐私的频繁序列挖掘模型,设计算法予以实现。该算法采用剪枝思想获取频繁序列,利用随机响应方法在局部敏感度基础上干扰数据集,并利用序列支持度和专有隐私预算提高其适用性,利用FP-Growth前缀与后缀原理,由2级与2级以上频繁序列挖掘3级与3级以上频繁序列;选取合理局部敏感度遍历干扰前后的数据集,以确定挖掘频繁序列的运行时间;根据差分隐私的组合性质,从理论角度证明算法满足局部差分隐私,并实验验证算法的有效性。实验结果表明该算法可以安全高效地实现频繁序列的局部差分隐私保护,保证频繁序列的准确性。 展开更多
关键词 局部差分隐私 频繁序列 随机响应 局部敏感度 隐私保护 专有隐私预算 数据效用 关联规则
在线阅读 下载PDF
随机响应机制效用优化研究 被引量:2
14
作者 周异辉 鲁来凤 吴振强 《通信学报》 EI CSCD 北大核心 2019年第6期74-81,共8页
针对本地化差分隐私中的隐私-效用均衡问题,对差分隐私和近似差分隐私情形下的二元广义随机响应机制建立效用优化模型,并采用图解法、最优性证明、软件求解和极值点等方法求解,得到了效用最优值与隐私预算、输入数据分布的精确表达式,... 针对本地化差分隐私中的隐私-效用均衡问题,对差分隐私和近似差分隐私情形下的二元广义随机响应机制建立效用优化模型,并采用图解法、最优性证明、软件求解和极值点等方法求解,得到了效用最优值与隐私预算、输入数据分布的精确表达式,给出了相应的效用最优机制。研究结果表明效用最优值和效用最优机制均与隐私预算和输入数据分布相关。另外,多元随机响应机制效用优化模型可通过本地化差分隐私极值点来求解。 展开更多
关键词 本地化差分隐私 随机响应 效用优化 极值点 单纯形法
在线阅读 下载PDF
抵御对抗样本攻击的指纹室内定位方法 被引量:1
15
作者 张学军 鲍俊达 +3 位作者 何福存 盖继扬 田丰 黄海燕 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第11期2087-2101,共15页
随着城市智能化的发展,基于WiFi接收信号强度(RSS)的指纹室内定位服务受到社会的广泛关注。深度学习技术是利用RSS信号获得高室内定位性能的一种重要手段,但其易遭受对抗样本攻击,给定位系统带来严重安全隐患。为此,提出了一种抵御对抗... 随着城市智能化的发展,基于WiFi接收信号强度(RSS)的指纹室内定位服务受到社会的广泛关注。深度学习技术是利用RSS信号获得高室内定位性能的一种重要手段,但其易遭受对抗样本攻击,给定位系统带来严重安全隐患。为此,提出了一种抵御对抗样本攻击的基于深度学习的RSS指纹室内定位方法(AdvILoc)。该方法基于图像识别领域对抗样本防御方法的研究和分析,结合室内RSS指纹数据特征单一且高维的特点,通过在RSS指纹室内定位深度学习模型中添加池化层、全连接层,以及满足差分隐私的噪声层来抵御对抗样本攻击,解决了基于深度学习的室内定位模型易过拟合且泛化能力不高的问题。通过添加Dropout层,以及设计模型参数正则化方法,提高模型抵御对抗样本攻击的鲁棒性。在2个真实RSS指纹室内定位数据集上的实验结果表明:与已有基于多层感知机(MLP)、卷积神经网络(CNN)的RSS指纹室内定位方法相比,所提方法在保证时间开销和基本不影响定位模型性能的情况下,提高了模型抵御对抗样本攻击的鲁棒性;在满足l范式规范的C&W攻击下,随着攻击大小不断增大,模型的定位准确率下降也更平稳。 展开更多
关键词 室内定位 对抗样本 深度学习 C&W攻击 差分隐私
在线阅读 下载PDF
基于局部差分隐私的电动汽车充电位置隐私汇聚 被引量:4
16
作者 熊星星 刘树波 +2 位作者 李丹 李永凯 王俊 《工程科学与技术》 EI CAS CSCD 北大核心 2019年第2期137-143,共7页
电动汽车频繁接入充电桩充电而产生的位置数据对优化充电桩布置、指导电力调度具有重要意义。然而充电位置数据对于汽车用户来说属于隐私信息。为防止汽车用户的隐私泄露,亟需探索研究隐私汇聚充电位置数据的方法。采用局部差分隐私技... 电动汽车频繁接入充电桩充电而产生的位置数据对优化充电桩布置、指导电力调度具有重要意义。然而充电位置数据对于汽车用户来说属于隐私信息。为防止汽车用户的隐私泄露,亟需探索研究隐私汇聚充电位置数据的方法。采用局部差分隐私技术保护电动汽车充电位置数据,通过引入贝叶斯随机多伪隐私算法设计一种基于分区的隐私保护充电位置数据汇聚方法。该方法利用贝叶斯随机多伪隐私算法设计了一个用于本地化扰动充电位置数据的局部混淆算法,然后,结合随机多伪算法的重构算法设计了满足稀疏、样本量小等特点的充电位置数据的隐私汇聚方法。同时,在保证隐私保护水平的前提下,通过对位置域进行划分以缩小隐私位置域,进一步提高汇聚结果的可用性。对所设计方法的隐私性进行分析。最后,在正态分布、均匀分布、峰值分布和随机分布4种不同的合成数据集以及公开的Gowalla数据集上进行验证。实验结果表明:在相同隐私水平的条件下,所设计的方法在可用性方面优于基于随机映射矩阵的隐私汇聚方法。 展开更多
关键词 电动汽车 充电位置 局部差分隐私 隐私保护
在线阅读 下载PDF
多级本地化差分隐私算法推荐框架 被引量:2
17
作者 王瀚仪 李效光 +3 位作者 毕文卿 陈亚虹 李凤华 牛犇 《通信学报》 EI CSCD 北大核心 2022年第8期52-64,共13页
本地化差分隐私(LDP)算法通常为不同用户分配相同的保护机制及参数,却忽视了不同用户终端设备资源与隐私需求的差异。为此,提出一种多级LDP算法推荐框架。该框架考虑服务商以及用户的需求,通过服务商和用户的多级管理实现多用户差异化... 本地化差分隐私(LDP)算法通常为不同用户分配相同的保护机制及参数,却忽视了不同用户终端设备资源与隐私需求的差异。为此,提出一种多级LDP算法推荐框架。该框架考虑服务商以及用户的需求,通过服务商和用户的多级管理实现多用户差异化隐私保护。将框架应用至频数统计场景形成LDP算法推荐方案,改进LDP算法以保证统计结果的可用性,设计协同机制保护用户的隐私偏好。实验结果证明了所提方案的可用性。 展开更多
关键词 本地化差分隐私 资源自适应 个性化隐私预算
在线阅读 下载PDF
(ε,δ)-本地差分隐私模型下的均值估计机制 被引量:1
18
作者 张跃 朱友文 +1 位作者 周玉倩 袁家斌 《电子与信息学报》 EI CSCD 北大核心 2023年第3期765-774,共10页
相对于ε-本地差分隐私(LDP)机制,(ε,δ)-本地差分隐私模型下的方案具有更小的误差边界和更高的数据效用。然而,当前的(ε,δ)-本地差分隐私均值估计机制仍存在估计误差大、数据效用低等问题。因此,针对均值估计问题,该文提出两种新的(... 相对于ε-本地差分隐私(LDP)机制,(ε,δ)-本地差分隐私模型下的方案具有更小的误差边界和更高的数据效用。然而,当前的(ε,δ)-本地差分隐私均值估计机制仍存在估计误差大、数据效用低等问题。因此,针对均值估计问题,该文提出两种新的(ε,δ)-本地差分隐私均值估计机制:基于区间的均值估计机制(IM)和基于近邻的均值估计机制(NM)。IM的主要思想是:划分扰动后的数据到3个区间,真实数据以较大概率扰动到中间的区间,以较小概率扰动到两边的区间,收集者直接对扰动数据求均值得到无偏估计。NM的主要思想是:把真实数据以较大概率扰动到其邻域,以较小概率扰动到距离较远的值,收集者结合期望最大化算法得到高准确度的估计均值。最后,该文通过理论分析证明了IM和NM均可以满足隐私保护要求,并通过实验证实了IM和NM的数据效用优于现有机制。 展开更多
关键词 隐私保护 本地差分隐私 数据聚合 均值估计
在线阅读 下载PDF
面向6G的雾无线接入网内生安全数据共享机制研究 被引量:8
19
作者 刘杨 李珺 +1 位作者 陈文韵 彭木根 《通信学报》 EI CSCD 北大核心 2021年第1期67-78,共12页
为解决6G移动通信系统中雾无线接入网中数据共享的数据安全问题,提出了一种实现本地差分隐私和动态批量审计的内生安全数据共享机制。首先,用户本地对数据运行RAPPOR算法保护数据隐私;其次,雾接入点对数据进行缓存和预处理;再次,大功率... 为解决6G移动通信系统中雾无线接入网中数据共享的数据安全问题,提出了一种实现本地差分隐私和动态批量审计的内生安全数据共享机制。首先,用户本地对数据运行RAPPOR算法保护数据隐私;其次,雾接入点对数据进行缓存和预处理;再次,大功率节点对雾接入点上的数据进行基于BLS签名和Merkle哈希树的数据完整性审计;最后,BBU池通过统计分析推断出共享数据的原始分布。安全性分析和仿真表明,所提机制实现了用户的本地差分隐私,并支持安全的多客户端批量审计和数据动态操作,同时具有较高的时间、空间和通信效率。 展开更多
关键词 数据共享 雾无线接入网 内生安全 本地化差分隐私 数据完整性审计
在线阅读 下载PDF
基于OLH的效用优化本地差分隐私机制 被引量:2
20
作者 贺星宇 朱友文 张跃 《密码学报》 CSCD 2022年第5期820-833,共14页
效用优化本地差分隐私模型能够在保证隐私的前提下提高估计结果准确度.但现有的效用优化本地差分隐私协议存在着数据效用低或通信代价大的问题.本文针对现有效用优化本地差分隐私协议难以兼顾低通信代价和高数据效用的不足,基于OLH(opti... 效用优化本地差分隐私模型能够在保证隐私的前提下提高估计结果准确度.但现有的效用优化本地差分隐私协议存在着数据效用低或通信代价大的问题.本文针对现有效用优化本地差分隐私协议难以兼顾低通信代价和高数据效用的不足,基于OLH(optimized local hashing)协议提出了符合效用优化本地差分隐私模型的uOLH(utility-optimized OLH)协议.该协议在原始数据定义域很大时,同时具有低通信代价和高数据效用的特点,兼顾u RR(utility-optimized randomized response)和uRAP(utilityoptimized randomized aggregatable privacy-preserving ordinal response)二者优势.本文进一步考虑了用户的个性化隐私保护需求,构造了优化加权组合机制DWC(data weighted combination),在此基础上提出了个性化效用优化本地差分隐私协议uOLH-DWC.允许用户自由选择隐私级别,并能够提升估计结果的准确度,可输出多个隐私级别下的频率估计结果.在真实和模拟数据集上的实验结果表明,u OLH协议可以同时具有低通信代价与高数据效用,且uOLH-DWC协议可令用户自由选择隐私预算,并提升了各个隐私级别下估计结果的准确度. 展开更多
关键词 本地差分隐私 效用优化 通信代价 个性化
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部