In this paper,we study the following Schrödinger-Poisson system{-ε^(p)Δ_(p)u+V(x)|u|^(p-2)u+ϕ|u|^(p-2)u=f(u)+|u|^(p*-2)u in R^(3),-ε^(2)Δϕ=|u|^(p)in R^(3),whereε>0 is a parameter,3/2<p<3,Δ_(p)u=div...In this paper,we study the following Schrödinger-Poisson system{-ε^(p)Δ_(p)u+V(x)|u|^(p-2)u+ϕ|u|^(p-2)u=f(u)+|u|^(p*-2)u in R^(3),-ε^(2)Δϕ=|u|^(p)in R^(3),whereε>0 is a parameter,3/2<p<3,Δ_(p)u=div(|∇u|^(p-2)∇u),p^(*)=3p/3-p,V:R^(3)→R is a potential function with a local minimum and f is subcritical growth.Based on the penalization method,Nehari manifold techniques and Ljusternik-Schnirelmann category theory,we obtain the multiplicity and concentration of positive solutions to the above system.展开更多
基金supported by the Natural Science Foundation of Gansu Province(No.24JRRP001)。
文摘In this paper,we study the following Schrödinger-Poisson system{-ε^(p)Δ_(p)u+V(x)|u|^(p-2)u+ϕ|u|^(p-2)u=f(u)+|u|^(p*-2)u in R^(3),-ε^(2)Δϕ=|u|^(p)in R^(3),whereε>0 is a parameter,3/2<p<3,Δ_(p)u=div(|∇u|^(p-2)∇u),p^(*)=3p/3-p,V:R^(3)→R is a potential function with a local minimum and f is subcritical growth.Based on the penalization method,Nehari manifold techniques and Ljusternik-Schnirelmann category theory,we obtain the multiplicity and concentration of positive solutions to the above system.