This paper introduces a new hyperchaotic system by adding an additional state into the third-order Liu chaotic system. Some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapunov exponent, fra...This paper introduces a new hyperchaotic system by adding an additional state into the third-order Liu chaotic system. Some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapunov exponent, fractal dimension and the hyperchaotic attractor evolving into chaotic, periodic, quasi-periodic dynamical behaviours by varying parameter d are studied briefly. Various attractors are illustrated not only by computer simulation but also by conducting an electronic circuit experiment.展开更多
Based on the three-dimensional Liu chaotic system, this paper appends a feedback variable to construct a novel hyperchaotic Liu system. Then, a control signal is further added to construct a novel nonautonomous hyperc...Based on the three-dimensional Liu chaotic system, this paper appends a feedback variable to construct a novel hyperchaotic Liu system. Then, a control signal is further added to construct a novel nonautonomous hyperchaotic Liu system. Through adjusting the frequency of the control signal, the chaotic property of the system can be controlled to show some different dynamic behaviors such as periodic, quasi-periodic, chaotic and hyperchaotic dynamic behaviours. By numerical simulations, the Lyapunov exponent spectrums, bifurcation diagrams and phase diagrams of the two new systems are studied, respectively. Furthermore, the synchronizing circuits of the nonautonomous hyperchaotic Liu system are designed via the synchronization control method of single variable coupling feedback. Finally, the hardware circuits are implemented, and the corresponding waves of chaos are observed by an oscillograph.展开更多
A technical framework of constructing a linear controller for chaotic synchronization by utilizing the stability theory of cascade-connected system is presented. Based on the method developed in the paper, two simple ...A technical framework of constructing a linear controller for chaotic synchronization by utilizing the stability theory of cascade-connected system is presented. Based on the method developed in the paper, two simple and linear feedback controllers, as examples, are derived for the synchronization of Liu chaotic system and Duffing oscillator, respectively. This method is quite flexible in constructing a control law. Its effectiveness is also illustrated by the simulation results.展开更多
文摘This paper introduces a new hyperchaotic system by adding an additional state into the third-order Liu chaotic system. Some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapunov exponent, fractal dimension and the hyperchaotic attractor evolving into chaotic, periodic, quasi-periodic dynamical behaviours by varying parameter d are studied briefly. Various attractors are illustrated not only by computer simulation but also by conducting an electronic circuit experiment.
基金Project supported by the National Natural Science Foundation of China (Grant No 60572089)the Natural Science Foundation of Chongqing (Grant No CSTC,2008BB2087)
文摘Based on the three-dimensional Liu chaotic system, this paper appends a feedback variable to construct a novel hyperchaotic Liu system. Then, a control signal is further added to construct a novel nonautonomous hyperchaotic Liu system. Through adjusting the frequency of the control signal, the chaotic property of the system can be controlled to show some different dynamic behaviors such as periodic, quasi-periodic, chaotic and hyperchaotic dynamic behaviours. By numerical simulations, the Lyapunov exponent spectrums, bifurcation diagrams and phase diagrams of the two new systems are studied, respectively. Furthermore, the synchronizing circuits of the nonautonomous hyperchaotic Liu system are designed via the synchronization control method of single variable coupling feedback. Finally, the hardware circuits are implemented, and the corresponding waves of chaos are observed by an oscillograph.
基金Project supported by the National Natural Science Foundation of China (Grant No 60274032) and the Science and Technology Rising-Star Program of Shanghai (Grant No 04QMH1405).
文摘A technical framework of constructing a linear controller for chaotic synchronization by utilizing the stability theory of cascade-connected system is presented. Based on the method developed in the paper, two simple and linear feedback controllers, as examples, are derived for the synchronization of Liu chaotic system and Duffing oscillator, respectively. This method is quite flexible in constructing a control law. Its effectiveness is also illustrated by the simulation results.
基金Supported by the project of WUSE under grant number 20073201the Startup Found for NSFC in WUSEthe NSF of Hubei Province under grant number 2007ABA348~~