Liquid leakage of pipeline networks not only results in considerableresource wastage but also leads to environmental pollution and ecological imbalance.In response to this global issue, a bioinspired superhydrophobic ...Liquid leakage of pipeline networks not only results in considerableresource wastage but also leads to environmental pollution and ecological imbalance.In response to this global issue, a bioinspired superhydrophobic thermoplastic polyurethane/carbon nanotubes/graphene nanosheets flexible strain sensor (TCGS) hasbeen developed using a combination of micro-extrusion compression molding andsurface modification for real-time wireless detection of liquid leakage. The TCGSutilizes the synergistic effects of Archimedean spiral crack arrays and micropores,which are inspired by the remarkable sensory capabilities of scorpions. This designachieves a sensitivity of 218.13 at a strain of 2%, which is an increase of 4300%. Additionally, it demonstrates exceptional durability bywithstanding over 5000 usage cycles. The robust superhydrophobicity of the TCGS significantly enhances sensitivity and stability indetecting small-scale liquid leakage, enabling precise monitoring of liquid leakage across a wide range of sizes, velocities, and compositionswhile issuing prompt alerts. This provides critical early warnings for both industrial pipelines and potential liquid leakage scenariosin everyday life. The development and utilization of bioinspired ultrasensitive flexible strain sensors offer an innovative and effectivesolution for the early wireless detection of liquid leakage.展开更多
The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of mana...The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.展开更多
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo...The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.展开更多
The efficacy of spacecraft propulsion systems significantly depends on the choice of propellant.This study utilized laser-induced breakdown spectroscopy(LIBS)to investigate the impact of different fuel types,fuel rati...The efficacy of spacecraft propulsion systems significantly depends on the choice of propellant.This study utilized laser-induced breakdown spectroscopy(LIBS)to investigate the impact of different fuel types,fuel ratios,and laser energies on the plasma parameters of ammonium dinitramide(ADN)-based liquid propellants.Our findings suggest that 1-allyl-3-methylimidazolium dicyanamide(AMIMDCA)as a fuel choice led to higher plasma temperatures compared to methanol(CH_3OH)and hydroxyethyl hydrazine nitrate(HEHN)under the same experimental conditions.Optimization of the fuel ratio proved critical,and when the AMIMDCA ratio was 21wt.%the propellants could achieve the best propulsion performance.Increasing the incident laser energy not only enhanced the emission spectral intensity but also elevated the plasma temperature and electron density,thereby improving ablation efficiency.Notably,a combination of 100 mJ laser energy and 21wt.%AMIMDCA fuel produced a strong and stable plasma signal.This study contributes to our knowledge of pulsed laser micro-ablation in ADN-based liquid propellants,providing a useful optical diagnostic approach that can help refine the design and enhance the performance of spacecraft propulsion systems.展开更多
Microwave discharge plasma in liquid(MDPL)is a new type of water purification technology with a high mass transfer efficiency.It is a kind of low-temperature plasma technology.The reactive species produced by the disc...Microwave discharge plasma in liquid(MDPL)is a new type of water purification technology with a high mass transfer efficiency.It is a kind of low-temperature plasma technology.The reactive species produced by the discharge can efficiently act on the pollutants.To clarify the application prospects of MDPL in water treatment,the discharge performance,practical application,and pollutant degradation mechanism of MDPL were studied in this work.The effects of power,conductivity,pH,and Fe^(2+)concentration on the amount of reactive species produced by the discharge were explored.The most common and refractory perfluorinated compounds(perfluorooctanoic acid(PFOA)and perfluorooctane sulfonate(PFOS)in water environments are degraded by MDPL technology.The highest defluorination of PFOA was 98.8% and the highest defluorination of PFOS was 92.7%.The energy consumption efficiency of 50% defluorination(G_(50-F))of PFOA degraded by MDPL is 78.43 mg/kWh,PFOS is 42.19 mg/kWh.The results show that the MDPL technology is more efficient and cleaner for the degradation of perfluorinated compounds.Finally,the reaction path and pollutant degradation mechanisms of MDPL production were analyzed.The results showed that MDPL technology can produce a variety of reactive species and has a good treatment effect for refractory perfluorinated pollutants.展开更多
Solar steam generation(SSG)offers a cost-effective solution for producing clean water by utilizing solar energy.However,integrating effective thermal management and water transportation to develop high-efficiency sola...Solar steam generation(SSG)offers a cost-effective solution for producing clean water by utilizing solar energy.However,integrating effective thermal management and water transportation to develop high-efficiency solar evaporators remains a significant challenge.Here,inspired by the hierarchical structure of the stem of bird of paradise,a three-dimensional multiscale liquid metal/polyacrylonitrile(LM/PAN)evaporator is fabricated by assembling LM/PAN fibers.The strong localized surface plasmon resonance of LM particles and porous structure of LM/PAN fibers with interconnected channels lead to efficient light absorption up to 90.9%.Consequently,the multiscale biomimetic LM/PAN evaporator achieves an outstanding water evaporation rate of 2.66 kg m^(-2)h^(-1)with a solar energy efficiency of 96.5%under one sun irradiation and an exceptional water rate of 2.58 kg m^(-2)h^(-1)in brine.Additionally,the LM/PAN evaporator demonstrates a superior purification performance for seawater,with the concentration of Na^(+),Mg^(2+),K^(+)and Ca^(2+)in real seawater dramatically decreased by three orders to less than 7 mg L^(-1) after desalination under light irradiation.The multiscale LM/PAN evaporator with hierarchical structure regulates the water transportation as well as thermal management for highly effective solar-driven evaporation,providing valuable insight into the structural design principles for advanced SSG systems.展开更多
Battery safety is influenced by various factors,with thermal runaway being one of the most significant concerns.While most studies have concentrated on developing one-time,self-activating mechanism for thermal protect...Battery safety is influenced by various factors,with thermal runaway being one of the most significant concerns.While most studies have concentrated on developing one-time,self-activating mechanism for thermal protection,such as temperature-responsive electrodes,and thermal-shutdown separators,these methods only provide irreversible protection.Recently,reversible temperature-sensitive electrolytes have emerged as promising alternatives,offering both thermo-reversibility and self-protective properties.However,further research is crucial to fully understand these thermal-shutdown electrolytes.In this study,we propose lower critical solution temperature(LCST)phase behavior poly(benzyl methacrylate)/imidazolium-based ionic liquid mixtures to prepare temperature-sensitive electrolytes that provide reversible thermal shutdown protection of batteries.This electrolyte features an appropriate protection temperature(~105℃)and responds quickly within a 1 min at 105℃,causing cells to hardly discharge as the voltage suddenly drops to 3.38 V,and providing efficient thermal shutdown protection within 30 min.Upon cooling back to room temperature,the battery regains its original performance.Additionally,the electrolyte exhibits excellent cycling stability with the capacity retention of the battery is 91.6%after 500 cycles.This work provides a viable solution for preventing batteries from thermal runaway triggered by overheating.展开更多
X-ray detectors show potential applications in medical imaging,materials science,and nuclear energy.To achieve high detection efficiency and spatial resolution,many conventional semiconductor materials,such as amorpho...X-ray detectors show potential applications in medical imaging,materials science,and nuclear energy.To achieve high detection efficiency and spatial resolution,many conventional semiconductor materials,such as amorphous selenium,cadmium telluride zinc,and perovskites,have been utilized in direct conversion X-ray detectors.However,these semiconductor materials are susceptible to temperature-induced performance degradation,crystallization,delamination,uneven lattice growth,radiation damage,and high dark current.This study explores a new approach by coupling an FC40 electronic fluorinated liquid with a specialized high-resolution and high-readout-speed complementary metal-oxide-semiconductor(CMOS)pixel array,specifically the Topmetal II−chip,to fabricate a direct conversion X-ray detector.The fluorinated liquid FC40(molecular formula:C_(21)F_(48)N_(2))is an electronic medium that is minimally affected by temperature and displays no issues with uniform conductivity.It exhibits a low dark current and minimal radiation damage and enables customizable thickness in X-ray absorption.This addresses the limitations inherent in conventional semiconductor-based detectors.In this study,simple X-ray detector imaging tests were conducted,demonstrating the excellent coupling capability between FC40 electronic fluorinated liquid and CMOS chips by the X-ray detector.A spatial resolution of 4.0 lp/mm was measured using a striped line par card,and a relatively clear image of a cockroach was displayed in the digital radiography imaging results.Preliminary test results indicated the feasibility of fabricating an X-ray detector by combining FC40 electronic fluorinated liquid and CMOS chips.Owing to the absence of issues related to chip-material coupling,a high spatial resolution could be achieved by reducing the chip pixel size.This method presents a new avenue for studies on novel liquid-based direct conversion X-ray detectors.展开更多
To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturin...To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturing coal was developed,considering the coal heterogeneity and thermophysical parameters of nitrogen.The accuracy and applicability of model were verified by comparing with LN_(2) injection pre-cooling and fracturing experimental data.The effects of different pre-cooling times and horizontal stress ratios on coal damage evolution,permeability,temperature distribution,and fracture characteristics were analyzed.The results show that the permeability and damage of the coal increase exponentially,while the temperature decreases exponentially during the fracturing process.As the pre-cooling time increases,the damage range of the coal expands,and the fracture propagation becomes more pronounced.The initiation pressure and rupture pressure decrease and tend to stabilize with longer precooling times.As the horizontal stress ratio increases,fractures preferentially extend along the direction of maximum horizontal principal stress,leading to a significant decrease in both initiation and rupture pressures.At a horizontal stress ratio of 3,the initiation pressure drops by 48.07%,and the rupture pressure decreases by 41.36%.The results provide a theoretical basis for optimizing LN_(2) fracturing techniques and improving coal seam modification.展开更多
Flammable ionic liquids exhibit high conductivity and a broad electrochemical window,enabling the generation of combustible gases for combustion via electrochemical decomposition and thermal decomposition.This charact...Flammable ionic liquids exhibit high conductivity and a broad electrochemical window,enabling the generation of combustible gases for combustion via electrochemical decomposition and thermal decomposition.This characteristic holds significant implications in the realm of novel satellite propulsion.Introducing a fraction of the electrical energy into energetic ionic liquid fuels,the thermal decomposition process is facilitated by reducing the apparent activation energy required,and electrical energy can trigger the electrochemical decomposition of ionic liquids,presenting a promising approach to enhance combustion efficiency and energy release.This study applied an external voltage during the thermal decomposition of 1-ethyl-3-methylimidazole nitrate([EMIm]NO_(3)),revealing the effective alteration of the activation energy of[EMIm]NO_(3).The pyrolysis,electrochemical decomposition,and electron assisted enhancement products were identified through Thermogravimetry-Differential scanning calorimetry-Fourier transform infrared-Mass spectrometry(TG-DSC-FTIR-MS)and gas chromatography(GC)analyses,elucidating the degradation mechanism of[EMIm]NO_(3).Furthermore,an external voltage was introduced during the combustion of[EMIm]NO_(3),demonstrating the impact of voltage on the combustion process.展开更多
Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typicall...Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.展开更多
The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr...The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.展开更多
Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
In this study,the interactions between a Ga-based liquid metal,GaInSn,and several metal materials,including pure metals(Ni and Ti)and alloys(316H stainless steel(SS)and GH3535),at 650℃were investigated.The aim was to...In this study,the interactions between a Ga-based liquid metal,GaInSn,and several metal materials,including pure metals(Ni and Ti)and alloys(316H stainless steel(SS)and GH3535),at 650℃were investigated.The aim was to evaluate the corrosion performance and select a suitable candidate material for use as a molten salt manometer diaphragm in thermal energy storage systems.The results indicated that the alloys(316H SS and GH3535)exhibited less corrosion than pure metals(Ni and Ti)in liquid GaInSn.Ga-rich binary intermetallic compounds were found to form on the surfaces of all the tested metal materials exposed to liquid GaInSn,as a result of the decomposition of liquid GaInSn and its reaction with the constituent elements of the metal materials.The corrosion mechanism for all the tested materials exposed to liquid GaInSn was also investigated and proposed,which may aid in selecting the optimal candidate material when liquid GaInSn is used as the pressure-sensing medium.展开更多
Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and...Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction(HER and OER).Ionic liquids(ILs)or poly(ionic liquids)(PILs),containing heteroatoms,metal-based anions,and various structures,have been frequently involved as precursors to prepare electrocatalysts for water splitting.Moreover,ILs/PILs possess high conductivity,wide electrochemical windows,and high thermal and chemical stability,which can be directly applied in the electrocatalysis process with high durability.In this review,we focus on the studies of ILs/PILs-derived electrocatalysts for HER and OER,where ILs/PILs are applied as heteroatom dopants and metal precursors to prepare catalysts or are directly utilized as the electrocatalysts.Due to those attractive properties,IL/PIL-derived electrocatalysts exhibit excellent performance for electrochemical water splitting.All these accomplishments and developments are systematically summarized and thoughtfully discussed.Then,the overall perspectives for the current challenges and future developments of ILs/PILs-derived electrocatalysts are provided.展开更多
Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and i...Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and inexpensive process.However,fabricating high-performance atop textiles with good dispersity,stability,biocompatibility,and wearability for high-resolution,large-scale manufacturing,and practical applications has remained challenging.Here,waterbased multi-walled carbon nanotubes(MWCNTs)-decorated liquid metal(LM)inks are proposed with carbonaceous gallium–indium micro-nanostructure.With the assistance of biopolymers,the sodium alginate-encapsulated LM droplets contain high carboxyl groups which non-covalently crosslink with silk sericin-mediated MWCNTs.E-textile can be prepared subsequently via printing technique and natural waterproof triboelectric coating,enabling good flexibility,hydrophilicity,breathability,wearability,biocompatibility,conductivity,stability,and excellent versatility,without any artificial chemicals.The obtained e-textile can be used in various applications with designable patterns and circuits.Multi-sensing applications of recognizing complex human motions,breathing,phonation,and pressure distribution are demonstrated with repeatable and reliable signals.Self-powered and energy-harvesting capabilities are also presented by driving electronic devices and lighting LEDs.As proof of concept,this work provides new opportunities in a scalable and sustainable way to develop novel wearable electronics and smart clothing for future commercial applications.展开更多
The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflect...The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.展开更多
The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid me...The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid membranes for CO_(2) separation.The effects of treatment time and transmembrane pressure difference on CO_(2) permeance were evaluated.The best gas permeation performance was obtained with a treatment time of 10 min and the transmembrane pressure difference was 0.25 MPa.Characterization of the materials by Fourier transform infrared spectroscopy,x-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy demonstrates that the IL is grafted with carboxyl groups and deprotonated through plasma treatment.A preliminary mechanism for the plasma treatment and facilitated transport of CO_(2)has been proposed on this basis.展开更多
Atmospheric pressure plasma-liquid interactions exist in a variety of applications,including wastewater treatment,wound sterilization,and disinfection.In practice,the phenomenon of liquid surface depression will inevi...Atmospheric pressure plasma-liquid interactions exist in a variety of applications,including wastewater treatment,wound sterilization,and disinfection.In practice,the phenomenon of liquid surface depression will inevitably appear.The applied gas will cause a depression on the liquid surface,which will undoubtedly affect the plasma generation and further affect the application performance.However,the effect of liquid surface deformation on the plasma is still unclear.In this work,numerical models are developed to reveal the mechanism of liquid surface depressions affecting plasma discharge characteristics and the consequential distribution of plasma species,and further study the influence of liquid surface depressions of different sizes generated by different helium flow rates on the plasma.Results show that the liquid surface deformation changes the initial spatial electric field,resulting in the rearrangement of electrons on the liquid surface.The charges deposited on the liquid surface further increase the degree of distortion of the electric field.Moreover,the electric field and electron distribution affected by the liquid surface depression significantly influence the generation and distribution of active species,which determines the practical effectiveness of the relevant applications.This work explores the phenomenon of liquid surface depression,which has been neglected in previous related work,and contributes to further understanding of plasma-liquid interactions,providing better theoretical guidance for related applications and technologies.展开更多
The melting points of ionic liquids(ILs)reported since 2020 were surveyed,collected,and reviewed,which were further combined with the previous data to provide a database with 3129 ILs ranging from 177.15 to 645.9 K in...The melting points of ionic liquids(ILs)reported since 2020 were surveyed,collected,and reviewed,which were further combined with the previous data to provide a database with 3129 ILs ranging from 177.15 to 645.9 K in melting points.In addition,the factors that affect the melting point of ILs from macro,micro,and thermodynamic perspectives were summarized and analyzed.Then the development of the quantitative structure-property relationship(QSPR),group contribution method(GCM),and conductor-like screening model for realistic solvents(COSMO-RS)for predicting the melting points of ILs were reviewed and further analyzed.Combined with the evaluation together with the preliminary study conducted in this work,it shows that COSMO-RS is more promising and possible to further improve its performance,and a framework was thus proposed.展开更多
基金the National Natural Science Foundation of China(Grant No.52203037,52103031,and 52073107)the Natural Science Foundation of Hubei Province of China(Grant No.2022CFB649)the National Key Research and Development Program of China(Grant No.2022YFC3901902).
文摘Liquid leakage of pipeline networks not only results in considerableresource wastage but also leads to environmental pollution and ecological imbalance.In response to this global issue, a bioinspired superhydrophobic thermoplastic polyurethane/carbon nanotubes/graphene nanosheets flexible strain sensor (TCGS) hasbeen developed using a combination of micro-extrusion compression molding andsurface modification for real-time wireless detection of liquid leakage. The TCGSutilizes the synergistic effects of Archimedean spiral crack arrays and micropores,which are inspired by the remarkable sensory capabilities of scorpions. This designachieves a sensitivity of 218.13 at a strain of 2%, which is an increase of 4300%. Additionally, it demonstrates exceptional durability bywithstanding over 5000 usage cycles. The robust superhydrophobicity of the TCGS significantly enhances sensitivity and stability indetecting small-scale liquid leakage, enabling precise monitoring of liquid leakage across a wide range of sizes, velocities, and compositionswhile issuing prompt alerts. This provides critical early warnings for both industrial pipelines and potential liquid leakage scenariosin everyday life. The development and utilization of bioinspired ultrasensitive flexible strain sensors offer an innovative and effectivesolution for the early wireless detection of liquid leakage.
基金support of this work by National Key Research and Development Program of China(2019YFC19059003)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(23KJB430024)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB680)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)are gratefully acknowledged.
文摘The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.
文摘The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.
文摘The efficacy of spacecraft propulsion systems significantly depends on the choice of propellant.This study utilized laser-induced breakdown spectroscopy(LIBS)to investigate the impact of different fuel types,fuel ratios,and laser energies on the plasma parameters of ammonium dinitramide(ADN)-based liquid propellants.Our findings suggest that 1-allyl-3-methylimidazolium dicyanamide(AMIMDCA)as a fuel choice led to higher plasma temperatures compared to methanol(CH_3OH)and hydroxyethyl hydrazine nitrate(HEHN)under the same experimental conditions.Optimization of the fuel ratio proved critical,and when the AMIMDCA ratio was 21wt.%the propellants could achieve the best propulsion performance.Increasing the incident laser energy not only enhanced the emission spectral intensity but also elevated the plasma temperature and electron density,thereby improving ablation efficiency.Notably,a combination of 100 mJ laser energy and 21wt.%AMIMDCA fuel produced a strong and stable plasma signal.This study contributes to our knowledge of pulsed laser micro-ablation in ADN-based liquid propellants,providing a useful optical diagnostic approach that can help refine the design and enhance the performance of spacecraft propulsion systems.
基金supported by National Natural Science Foundation of China(Nos.12475258,12111530008 and 11675031)Major Scientific Research Project of Hebei Transportation Investment Group in 2024([202]155)the support of the Fundamental Research Funds for the Central Universities(No.3132023503)。
文摘Microwave discharge plasma in liquid(MDPL)is a new type of water purification technology with a high mass transfer efficiency.It is a kind of low-temperature plasma technology.The reactive species produced by the discharge can efficiently act on the pollutants.To clarify the application prospects of MDPL in water treatment,the discharge performance,practical application,and pollutant degradation mechanism of MDPL were studied in this work.The effects of power,conductivity,pH,and Fe^(2+)concentration on the amount of reactive species produced by the discharge were explored.The most common and refractory perfluorinated compounds(perfluorooctanoic acid(PFOA)and perfluorooctane sulfonate(PFOS)in water environments are degraded by MDPL technology.The highest defluorination of PFOA was 98.8% and the highest defluorination of PFOS was 92.7%.The energy consumption efficiency of 50% defluorination(G_(50-F))of PFOA degraded by MDPL is 78.43 mg/kWh,PFOS is 42.19 mg/kWh.The results show that the MDPL technology is more efficient and cleaner for the degradation of perfluorinated compounds.Finally,the reaction path and pollutant degradation mechanisms of MDPL production were analyzed.The results showed that MDPL technology can produce a variety of reactive species and has a good treatment effect for refractory perfluorinated pollutants.
基金supported by the National Natural Science Foundation of China(52372096,52102368,22205189,52203103)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(2017ZT07C291)+4 种基金the Shenzhen Science and Technology Program(JCYJ20230807114205011 and KQTD20170810141424366)the Guang Dong Basic and Applied Basic Research Foundation(2024A1515011953,2022A1515011010 and 2021A1515110350)the Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020SA001515110905)the Shenzhen Natural Science Foundation(GXWD20201231105722002-20200824163747001)the 2023 SZSTI stable support scheme.
文摘Solar steam generation(SSG)offers a cost-effective solution for producing clean water by utilizing solar energy.However,integrating effective thermal management and water transportation to develop high-efficiency solar evaporators remains a significant challenge.Here,inspired by the hierarchical structure of the stem of bird of paradise,a three-dimensional multiscale liquid metal/polyacrylonitrile(LM/PAN)evaporator is fabricated by assembling LM/PAN fibers.The strong localized surface plasmon resonance of LM particles and porous structure of LM/PAN fibers with interconnected channels lead to efficient light absorption up to 90.9%.Consequently,the multiscale biomimetic LM/PAN evaporator achieves an outstanding water evaporation rate of 2.66 kg m^(-2)h^(-1)with a solar energy efficiency of 96.5%under one sun irradiation and an exceptional water rate of 2.58 kg m^(-2)h^(-1)in brine.Additionally,the LM/PAN evaporator demonstrates a superior purification performance for seawater,with the concentration of Na^(+),Mg^(2+),K^(+)and Ca^(2+)in real seawater dramatically decreased by three orders to less than 7 mg L^(-1) after desalination under light irradiation.The multiscale LM/PAN evaporator with hierarchical structure regulates the water transportation as well as thermal management for highly effective solar-driven evaporation,providing valuable insight into the structural design principles for advanced SSG systems.
基金funded by the National Natural Science Foundation of China(no.22075155)the Zhejiang Provincial Natural Science Foundation of China(No.LY24B030002)+2 种基金Ningbo Natural Science Foundation(2023J089)the China Scholarship Council(CSC)the Ningbo Science and Technology Bureau(2024QL036).
文摘Battery safety is influenced by various factors,with thermal runaway being one of the most significant concerns.While most studies have concentrated on developing one-time,self-activating mechanism for thermal protection,such as temperature-responsive electrodes,and thermal-shutdown separators,these methods only provide irreversible protection.Recently,reversible temperature-sensitive electrolytes have emerged as promising alternatives,offering both thermo-reversibility and self-protective properties.However,further research is crucial to fully understand these thermal-shutdown electrolytes.In this study,we propose lower critical solution temperature(LCST)phase behavior poly(benzyl methacrylate)/imidazolium-based ionic liquid mixtures to prepare temperature-sensitive electrolytes that provide reversible thermal shutdown protection of batteries.This electrolyte features an appropriate protection temperature(~105℃)and responds quickly within a 1 min at 105℃,causing cells to hardly discharge as the voltage suddenly drops to 3.38 V,and providing efficient thermal shutdown protection within 30 min.Upon cooling back to room temperature,the battery regains its original performance.Additionally,the electrolyte exhibits excellent cycling stability with the capacity retention of the battery is 91.6%after 500 cycles.This work provides a viable solution for preventing batteries from thermal runaway triggered by overheating.
基金supported by the National Natural Science Foundation of China(No.12235006)the National Key Research and Development Program of China(No.2020YFE0202002.
文摘X-ray detectors show potential applications in medical imaging,materials science,and nuclear energy.To achieve high detection efficiency and spatial resolution,many conventional semiconductor materials,such as amorphous selenium,cadmium telluride zinc,and perovskites,have been utilized in direct conversion X-ray detectors.However,these semiconductor materials are susceptible to temperature-induced performance degradation,crystallization,delamination,uneven lattice growth,radiation damage,and high dark current.This study explores a new approach by coupling an FC40 electronic fluorinated liquid with a specialized high-resolution and high-readout-speed complementary metal-oxide-semiconductor(CMOS)pixel array,specifically the Topmetal II−chip,to fabricate a direct conversion X-ray detector.The fluorinated liquid FC40(molecular formula:C_(21)F_(48)N_(2))is an electronic medium that is minimally affected by temperature and displays no issues with uniform conductivity.It exhibits a low dark current and minimal radiation damage and enables customizable thickness in X-ray absorption.This addresses the limitations inherent in conventional semiconductor-based detectors.In this study,simple X-ray detector imaging tests were conducted,demonstrating the excellent coupling capability between FC40 electronic fluorinated liquid and CMOS chips by the X-ray detector.A spatial resolution of 4.0 lp/mm was measured using a striped line par card,and a relatively clear image of a cockroach was displayed in the digital radiography imaging results.Preliminary test results indicated the feasibility of fabricating an X-ray detector by combining FC40 electronic fluorinated liquid and CMOS chips.Owing to the absence of issues related to chip-material coupling,a high spatial resolution could be achieved by reducing the chip pixel size.This method presents a new avenue for studies on novel liquid-based direct conversion X-ray detectors.
基金financially supported by the National Natural Science Foundation of China(Nos.51874236 and 52174207)Shaanxi Science and Technology Innovation Team(No.2022TD02)Henan University of Science and Technology PhD Funded Projects(No.B2025-9)。
文摘To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturing coal was developed,considering the coal heterogeneity and thermophysical parameters of nitrogen.The accuracy and applicability of model were verified by comparing with LN_(2) injection pre-cooling and fracturing experimental data.The effects of different pre-cooling times and horizontal stress ratios on coal damage evolution,permeability,temperature distribution,and fracture characteristics were analyzed.The results show that the permeability and damage of the coal increase exponentially,while the temperature decreases exponentially during the fracturing process.As the pre-cooling time increases,the damage range of the coal expands,and the fracture propagation becomes more pronounced.The initiation pressure and rupture pressure decrease and tend to stabilize with longer precooling times.As the horizontal stress ratio increases,fractures preferentially extend along the direction of maximum horizontal principal stress,leading to a significant decrease in both initiation and rupture pressures.At a horizontal stress ratio of 3,the initiation pressure drops by 48.07%,and the rupture pressure decreases by 41.36%.The results provide a theoretical basis for optimizing LN_(2) fracturing techniques and improving coal seam modification.
基金supported by the National Natural Science Foundation of China(Grant No.52206165)。
文摘Flammable ionic liquids exhibit high conductivity and a broad electrochemical window,enabling the generation of combustible gases for combustion via electrochemical decomposition and thermal decomposition.This characteristic holds significant implications in the realm of novel satellite propulsion.Introducing a fraction of the electrical energy into energetic ionic liquid fuels,the thermal decomposition process is facilitated by reducing the apparent activation energy required,and electrical energy can trigger the electrochemical decomposition of ionic liquids,presenting a promising approach to enhance combustion efficiency and energy release.This study applied an external voltage during the thermal decomposition of 1-ethyl-3-methylimidazole nitrate([EMIm]NO_(3)),revealing the effective alteration of the activation energy of[EMIm]NO_(3).The pyrolysis,electrochemical decomposition,and electron assisted enhancement products were identified through Thermogravimetry-Differential scanning calorimetry-Fourier transform infrared-Mass spectrometry(TG-DSC-FTIR-MS)and gas chromatography(GC)analyses,elucidating the degradation mechanism of[EMIm]NO_(3).Furthermore,an external voltage was introduced during the combustion of[EMIm]NO_(3),demonstrating the impact of voltage on the combustion process.
基金supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCO,the Samsung Research Funding&Incubation Center for Future Technology grant(SRFC-IT1901-52)funded by Samsung Electronicsthe National Research Foundation(NRF)grants(NRF-2022M3C1A3081312,NRF-2022M3H4A1A-02074314,NRF-2022M3H4A1A02046445,NRF-2021M3H4A1A04086357,NRF-2019R1A5A8080290,RS-2024-00356928,RS-2023-00283667)funded by the Ministry of Science and ICT of the Korean governmentthe Korea Evaluation Institute of Industrial Technology(KEIT)grant(No.1415185027/20019169,Alchemist project)funded by the Ministry of Trade,Industry and Energy(MOTIE)of the Korean government.H.Kim and J.Kim acknowledge the POSTECH Alchemist fellowship,the Asan Foundation Biomedical Science fellowship,and Presidential Science fellowship funded by the MSIT of the Korean government.
文摘Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.
基金This work was supported by the National Natural Science Foundation of China(nos.21988102,and 22305026)the China Postdoctoral Science Foundation(2019M650433).
文摘The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
基金supported by the National Natural Science Foundation of China(Nos.12005289 and 52071331)the National Key R&D Program of China(No.2019YFA0210000)the State Key Laboratory of Nuclear Detection and Electronics,University of Science and Technology of China(No.SKLPDE-KF-202316)。
文摘In this study,the interactions between a Ga-based liquid metal,GaInSn,and several metal materials,including pure metals(Ni and Ti)and alloys(316H stainless steel(SS)and GH3535),at 650℃were investigated.The aim was to evaluate the corrosion performance and select a suitable candidate material for use as a molten salt manometer diaphragm in thermal energy storage systems.The results indicated that the alloys(316H SS and GH3535)exhibited less corrosion than pure metals(Ni and Ti)in liquid GaInSn.Ga-rich binary intermetallic compounds were found to form on the surfaces of all the tested metal materials exposed to liquid GaInSn,as a result of the decomposition of liquid GaInSn and its reaction with the constituent elements of the metal materials.The corrosion mechanism for all the tested materials exposed to liquid GaInSn was also investigated and proposed,which may aid in selecting the optimal candidate material when liquid GaInSn is used as the pressure-sensing medium.
基金supported by the Natural Science Founda-tion of Chongqing(cstc2021jcyj-msxmX0420)Natural Science Foundation of Sichuan(2023NSFSC0088)。
文摘Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction(HER and OER).Ionic liquids(ILs)or poly(ionic liquids)(PILs),containing heteroatoms,metal-based anions,and various structures,have been frequently involved as precursors to prepare electrocatalysts for water splitting.Moreover,ILs/PILs possess high conductivity,wide electrochemical windows,and high thermal and chemical stability,which can be directly applied in the electrocatalysis process with high durability.In this review,we focus on the studies of ILs/PILs-derived electrocatalysts for HER and OER,where ILs/PILs are applied as heteroatom dopants and metal precursors to prepare catalysts or are directly utilized as the electrocatalysts.Due to those attractive properties,IL/PIL-derived electrocatalysts exhibit excellent performance for electrochemical water splitting.All these accomplishments and developments are systematically summarized and thoughtfully discussed.Then,the overall perspectives for the current challenges and future developments of ILs/PILs-derived electrocatalysts are provided.
基金funded by The Hong Kong Polytechnic University(Project No.1-WZ1Y,1-YXAK,1-W21C).
文摘Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and inexpensive process.However,fabricating high-performance atop textiles with good dispersity,stability,biocompatibility,and wearability for high-resolution,large-scale manufacturing,and practical applications has remained challenging.Here,waterbased multi-walled carbon nanotubes(MWCNTs)-decorated liquid metal(LM)inks are proposed with carbonaceous gallium–indium micro-nanostructure.With the assistance of biopolymers,the sodium alginate-encapsulated LM droplets contain high carboxyl groups which non-covalently crosslink with silk sericin-mediated MWCNTs.E-textile can be prepared subsequently via printing technique and natural waterproof triboelectric coating,enabling good flexibility,hydrophilicity,breathability,wearability,biocompatibility,conductivity,stability,and excellent versatility,without any artificial chemicals.The obtained e-textile can be used in various applications with designable patterns and circuits.Multi-sensing applications of recognizing complex human motions,breathing,phonation,and pressure distribution are demonstrated with repeatable and reliable signals.Self-powered and energy-harvesting capabilities are also presented by driving electronic devices and lighting LEDs.As proof of concept,this work provides new opportunities in a scalable and sustainable way to develop novel wearable electronics and smart clothing for future commercial applications.
基金supported by National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(RS-2024-00335216,RS-2024-00407084 and RS-2023-00207836)Korea Environment Industry&Technology Institute(KEITI)through the R&D Project of Recycling Development for Future Waste Resources Program,funded by the Korea Ministry of Environment(MOE)(2022003500003).
文摘The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.
基金supported by the National Key R&D Program of China ‘Intergovernmental International Scientific and Technological Innovation Cooperation’ (No. 2019YFE0122100)。
文摘The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid membranes for CO_(2) separation.The effects of treatment time and transmembrane pressure difference on CO_(2) permeance were evaluated.The best gas permeation performance was obtained with a treatment time of 10 min and the transmembrane pressure difference was 0.25 MPa.Characterization of the materials by Fourier transform infrared spectroscopy,x-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy demonstrates that the IL is grafted with carboxyl groups and deprotonated through plasma treatment.A preliminary mechanism for the plasma treatment and facilitated transport of CO_(2)has been proposed on this basis.
基金supported by National Natural Science Foundation of China(No.52377145).
文摘Atmospheric pressure plasma-liquid interactions exist in a variety of applications,including wastewater treatment,wound sterilization,and disinfection.In practice,the phenomenon of liquid surface depression will inevitably appear.The applied gas will cause a depression on the liquid surface,which will undoubtedly affect the plasma generation and further affect the application performance.However,the effect of liquid surface deformation on the plasma is still unclear.In this work,numerical models are developed to reveal the mechanism of liquid surface depressions affecting plasma discharge characteristics and the consequential distribution of plasma species,and further study the influence of liquid surface depressions of different sizes generated by different helium flow rates on the plasma.Results show that the liquid surface deformation changes the initial spatial electric field,resulting in the rearrangement of electrons on the liquid surface.The charges deposited on the liquid surface further increase the degree of distortion of the electric field.Moreover,the electric field and electron distribution affected by the liquid surface depression significantly influence the generation and distribution of active species,which determines the practical effectiveness of the relevant applications.This work explores the phenomenon of liquid surface depression,which has been neglected in previous related work,and contributes to further understanding of plasma-liquid interactions,providing better theoretical guidance for related applications and technologies.
基金the financial support from National Natural Science Foundation of China(No.21838004,22011530112)China ScholarshipCouncil(No.202208320253)+2 种基金STINT(CH2019-8287)the Swedish Research Councilthe financial support from Horizon-EIC,Pathfinder challenges,Grant Number:101070976.
文摘The melting points of ionic liquids(ILs)reported since 2020 were surveyed,collected,and reviewed,which were further combined with the previous data to provide a database with 3129 ILs ranging from 177.15 to 645.9 K in melting points.In addition,the factors that affect the melting point of ILs from macro,micro,and thermodynamic perspectives were summarized and analyzed.Then the development of the quantitative structure-property relationship(QSPR),group contribution method(GCM),and conductor-like screening model for realistic solvents(COSMO-RS)for predicting the melting points of ILs were reviewed and further analyzed.Combined with the evaluation together with the preliminary study conducted in this work,it shows that COSMO-RS is more promising and possible to further improve its performance,and a framework was thus proposed.