An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The infl...An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The influence of unknown disturbances and uncertainties is reduced by RBFNN thanks to its approaching ability, and a robustifying itera is used to overcome the approximate error of RBFNN. The parameters adaptive adjusting laws are designed on the Lyapunov theory. The uniform ultimate boundedness of all signals of the composite closed-loop system is proved based on Lyapunov theory. Finally, the flight control system of an ASV is designed based on the proposed method. Simulation results demonstrate the effectiveness and robustness of the designed approach.展开更多
Performance robustness problems via the state feedback controller are investigated for a class of uncertain nonlinear systems with time-delay in both state and control, in which the neural networks are used to model t...Performance robustness problems via the state feedback controller are investigated for a class of uncertain nonlinear systems with time-delay in both state and control, in which the neural networks are used to model the nonlinearities. By using an appropriate uncertainty description and the linear difference inclusion technique, sufficient conditions for existence of such controller are derived based on the linear matrix inequalities (LMIs). Using solutions of LMIs, a state feedback control law is proposed to stabilize the perturbed system and guarantee an upper bound of system performance, which is applicable to arbitrary time-delays.展开更多
A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed. Firstly, neural networks are employed to approximate the nonlinearities. Next, the nonlinear dynamic system is represe...A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed. Firstly, neural networks are employed to approximate the nonlinearities. Next, the nonlinear dynamic system is represented by the mode-dependent linear difference inclusion (LDI). Finally, based on the LDI model, a neural network-based nonlinear filter (NNBNF) is developed to minimize the upper bound of H∞ gain index of the estimation error under some linear matrix inequality (LMI) constraints. Compared with the existing nonlinear filters, NNBNF is time-invariant and numerically tractable. The validity and applicability of the proposed approach are successfully demonstrated in an illustrative example.展开更多
The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the ...The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the delay is assumed to be time-varying and belongs to a given interval,which means that the lower and upper bounds of interval time-varying delays are available.By constructing proper Lyapunov-Krasovskii functional and employing a combination of the free-weighting matrix method and stochastic analysis technique,new delay-dependent passivity conditions are derived in terms of linear matrix inequalities(LMIs).Finally,numerical examples are given to show the less conservatism of the proposed conditions.展开更多
The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new d...The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.展开更多
Both time-delays and anti-windup(AW)problems are conventional problems in system design,which are scarcely discussed in cellular neural networks(CNNs).This paper discusses stabilization for a class of distributed time...Both time-delays and anti-windup(AW)problems are conventional problems in system design,which are scarcely discussed in cellular neural networks(CNNs).This paper discusses stabilization for a class of distributed time-delayed CNNs with input saturation.Based on the Lyapunov theory and the Schur complement principle,a bilinear matrix inequality(BMI)criterion is designed to stabilize the system with input saturation.By matrix congruent transformation,the BMI control criterion can be changed into linear matrix inequality(LMI)criterion,then it can be easily solved by the computer.It is a one-step AW strategy that the feedback compensator and the AW compensator can be determined simultaneously.The attraction domain and its optimization are also discussed.The structure of CNNs with both constant timedelays and distribute time-delays is more general.This method is simple and systematic,allowing dealing with a large class of such systems whose excitation satisfies the Lipschitz condition.The simulation results verify the effectiveness and feasibility of the proposed method.展开更多
A new approach for the design of two-dimensional (2-D) linear phase FIR digital filters based on a new neural networks algorithm (NNA) is provided. A compact expression for the transfer function of a 2-D linear ph...A new approach for the design of two-dimensional (2-D) linear phase FIR digital filters based on a new neural networks algorithm (NNA) is provided. A compact expression for the transfer function of a 2-D linear phase FIR filter is derived based on its frequency response characteristic, and the NNA, based on minimizing the square-error in the frequency-domain, is established according to the compact expression. To illustrate the stability of the NNA, the convergence theorem is presented and proved. Design examples are also given, and the results show that the ripple is considerably small in passband and stopband, and the NNA-based method is of powerful stability and requires quite little amount of computations.展开更多
The problem of passivity analysis for a class of discrete-time stochastic neural networks (DSNNs) with time-varying interval delay was investigated. The delay-dependent sufficient criteria were derived in terms of lin...The problem of passivity analysis for a class of discrete-time stochastic neural networks (DSNNs) with time-varying interval delay was investigated. The delay-dependent sufficient criteria were derived in terms of linear matrix inequalities (LMIs). The results are shown to be generalization of some previous results and are less conservative than the existing works. Meanwhile, the computational complexity of the obtained stability conditions is reduced because less variables are involved. A numerical example is given to show the effectiveness and the benefits of the proposed method.展开更多
Delay-dependent robust stability of cellular neural networks with time-varying discrete and distributed time-varying delays is considered. Based on Lyapunov stability theory and the linear matrix inequality (LMIs) t...Delay-dependent robust stability of cellular neural networks with time-varying discrete and distributed time-varying delays is considered. Based on Lyapunov stability theory and the linear matrix inequality (LMIs) technique, delay-dependent stability criteria are derived in terms of LMIs avoiding bounding certain cross terms, which often leads to conservatism. The effectiveness of the proposed stability criteria and the improvement over the existing results are illustrated in the numerical examples.展开更多
As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information...As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information to the expanded images, and cannot improve resolution in deed. Multiframe-based techniques are effective ways for high-resolution image reconstruction, but their computation complexities and the difficulties in achieving image sequences limit their applications. An original method using an artificial neural network is proposed in this paper. Using the inherent merits in neural network, we can establish the mapping between high frequency components in low-resolution images and high-resolution images. Example applications and their results demonstrated the images reconstructed by our method are aesthetically and quantitatively (using the criteria of MSE and MAE) superior to the images acquired by common methods. Even for infrared images this method can give satisfactory results with high definition. In addition, a single-layer linear neural network is used in this paper, the computational complexity is very low, and this method can be realized in real time.展开更多
We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-tim...We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-time BAM neural networks as the extended discrete-time BAM neural networks with non-threshold activation functions. Here we present some conditions under which the neural networks have unique equilibrium points. To judge the global asymptotic stability of the equilibrium points, we introduce a new neural network model - standard neural network model (SNNM). For the SNNMs, we derive the sufficient conditions for the global asymptotic stability of the equilibrium points, which are formulated as some linear matrix inequalities (LMIs). We transform the discrete-time BAM into the SNNM and apply the general result about the SNNM to the determination of global asymptotic stability of the discrete-time BAM. The approach proposed extends the known stability results, has lower conservativeness, can be verified easily, and can also be applied to other forms of recurrent neural networks.展开更多
The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theor...The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results.展开更多
The robust stability of a class of Hopfield neural networks with multiple delays and parameter perturbations is analyzed. The sufficient conditions for the global robust stability of equilibrium point are given by way...The robust stability of a class of Hopfield neural networks with multiple delays and parameter perturbations is analyzed. The sufficient conditions for the global robust stability of equilibrium point are given by way of constructing a suitable Lyapunov functional. The conditions take the form of linear matrix inequality (LMI), so they are computable and verifiable efficiently. Furthermore, all the results are obtained without assuming the differentiability and monotonicity of activation functions. From the viewpoint of system analysis, our results provide sufficient conditions for the global robust stability in a manner that they specify the size of perturbation that Hopfield neural networks can endure when the structure of the network is given. On the other hand, from the viewpoint of system synthesis, our results can answer how to choose the parameters of neural networks to endure a given perturbation.展开更多
四元数神经网络将实值神经网络推广到了四元数代数中,其在偏振合成孔径雷达奇异点补偿、口语理解、机器人控制等任务中取得了比实值神经网络更高的精度或更快的收敛速度.四元数神经网络的性能在实验中已得到广泛验证,但四元数神经网络...四元数神经网络将实值神经网络推广到了四元数代数中,其在偏振合成孔径雷达奇异点补偿、口语理解、机器人控制等任务中取得了比实值神经网络更高的精度或更快的收敛速度.四元数神经网络的性能在实验中已得到广泛验证,但四元数神经网络的理论性质及其相较于实值神经网络的优势研究较少.从表示能力的角度出发,研究四元数神经网络的理论性质及其相较于实值神经网络的优势.首先,证明了四元数神经网络使用一个非分开激活的修正线性单元(rectified linear unit,ReLU)型激活函数时的通用近似定理.其次,研究了四元数神经网络相较于实值神经网络的逼近优势.针对分开激活的ReLU型激活函数,证明了单隐层实值神经网络需要约4倍参数量才能生成与单隐层四元数神经网络相同的最大凸线性区域数.针对非分开激活的ReLU型激活函数,证明了单隐层四元数神经网络与单隐层实值神经网络间的逼近分离:四元数神经网络可用相同的隐层神经元数量与权重模长表示实值神经网络,而实值神经网络需要指数多个隐层神经元或指数大的参数才可能近似四元数神经网络.最后,模拟实验验证了理论.展开更多
基金the National Natural Science Foundation of China (90405011).
文摘An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The influence of unknown disturbances and uncertainties is reduced by RBFNN thanks to its approaching ability, and a robustifying itera is used to overcome the approximate error of RBFNN. The parameters adaptive adjusting laws are designed on the Lyapunov theory. The uniform ultimate boundedness of all signals of the composite closed-loop system is proved based on Lyapunov theory. Finally, the flight control system of an ASV is designed based on the proposed method. Simulation results demonstrate the effectiveness and robustness of the designed approach.
基金This project was supported by the National Natural Science Foundation of China (60574001)Program for New Century Excellent Talents in University (NCET-05-0485).
文摘Performance robustness problems via the state feedback controller are investigated for a class of uncertain nonlinear systems with time-delay in both state and control, in which the neural networks are used to model the nonlinearities. By using an appropriate uncertainty description and the linear difference inclusion technique, sufficient conditions for existence of such controller are derived based on the linear matrix inequalities (LMIs). Using solutions of LMIs, a state feedback control law is proposed to stabilize the perturbed system and guarantee an upper bound of system performance, which is applicable to arbitrary time-delays.
基金the National Natural Science Foundation of China (60574001)Program for New CenturyExcellent Talents in University (NCET-05-0485) and PIRTJiangnan
文摘A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed. Firstly, neural networks are employed to approximate the nonlinearities. Next, the nonlinear dynamic system is represented by the mode-dependent linear difference inclusion (LDI). Finally, based on the LDI model, a neural network-based nonlinear filter (NNBNF) is developed to minimize the upper bound of H∞ gain index of the estimation error under some linear matrix inequality (LMI) constraints. Compared with the existing nonlinear filters, NNBNF is time-invariant and numerically tractable. The validity and applicability of the proposed approach are successfully demonstrated in an illustrative example.
基金supported by Department of Science and Technology,New Delhi,India(SR/S4/MS:485/07)
文摘The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the delay is assumed to be time-varying and belongs to a given interval,which means that the lower and upper bounds of interval time-varying delays are available.By constructing proper Lyapunov-Krasovskii functional and employing a combination of the free-weighting matrix method and stochastic analysis technique,new delay-dependent passivity conditions are derived in terms of linear matrix inequalities(LMIs).Finally,numerical examples are given to show the less conservatism of the proposed conditions.
基金supported by the National Natural Science Foundation of China(60874114).
文摘The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.
基金supported by the National Natural Science Foundation of China(61374003 41631072)the Academic Foundation of Naval University of Engineering(20161475)
文摘Both time-delays and anti-windup(AW)problems are conventional problems in system design,which are scarcely discussed in cellular neural networks(CNNs).This paper discusses stabilization for a class of distributed time-delayed CNNs with input saturation.Based on the Lyapunov theory and the Schur complement principle,a bilinear matrix inequality(BMI)criterion is designed to stabilize the system with input saturation.By matrix congruent transformation,the BMI control criterion can be changed into linear matrix inequality(LMI)criterion,then it can be easily solved by the computer.It is a one-step AW strategy that the feedback compensator and the AW compensator can be determined simultaneously.The attraction domain and its optimization are also discussed.The structure of CNNs with both constant timedelays and distribute time-delays is more general.This method is simple and systematic,allowing dealing with a large class of such systems whose excitation satisfies the Lipschitz condition.The simulation results verify the effectiveness and feasibility of the proposed method.
文摘A new approach for the design of two-dimensional (2-D) linear phase FIR digital filters based on a new neural networks algorithm (NNA) is provided. A compact expression for the transfer function of a 2-D linear phase FIR filter is derived based on its frequency response characteristic, and the NNA, based on minimizing the square-error in the frequency-domain, is established according to the compact expression. To illustrate the stability of the NNA, the convergence theorem is presented and proved. Design examples are also given, and the results show that the ripple is considerably small in passband and stopband, and the NNA-based method is of powerful stability and requires quite little amount of computations.
基金Projects(60874030,60835001,60574006)supported by the National Natural Science Foundation of ChinaProjects(07KJB510125,08KJD510008)supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of ChinaProject supported by the Qing Lan Program,Jiangsu Province,China
文摘The problem of passivity analysis for a class of discrete-time stochastic neural networks (DSNNs) with time-varying interval delay was investigated. The delay-dependent sufficient criteria were derived in terms of linear matrix inequalities (LMIs). The results are shown to be generalization of some previous results and are less conservative than the existing works. Meanwhile, the computational complexity of the obtained stability conditions is reduced because less variables are involved. A numerical example is given to show the effectiveness and the benefits of the proposed method.
文摘Delay-dependent robust stability of cellular neural networks with time-varying discrete and distributed time-varying delays is considered. Based on Lyapunov stability theory and the linear matrix inequality (LMIs) technique, delay-dependent stability criteria are derived in terms of LMIs avoiding bounding certain cross terms, which often leads to conservatism. The effectiveness of the proposed stability criteria and the improvement over the existing results are illustrated in the numerical examples.
文摘As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information to the expanded images, and cannot improve resolution in deed. Multiframe-based techniques are effective ways for high-resolution image reconstruction, but their computation complexities and the difficulties in achieving image sequences limit their applications. An original method using an artificial neural network is proposed in this paper. Using the inherent merits in neural network, we can establish the mapping between high frequency components in low-resolution images and high-resolution images. Example applications and their results demonstrated the images reconstructed by our method are aesthetically and quantitatively (using the criteria of MSE and MAE) superior to the images acquired by common methods. Even for infrared images this method can give satisfactory results with high definition. In addition, a single-layer linear neural network is used in this paper, the computational complexity is very low, and this method can be realized in real time.
基金This project was supported by the National Natural Science Foundation of China (60074008) .
文摘We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-time BAM neural networks as the extended discrete-time BAM neural networks with non-threshold activation functions. Here we present some conditions under which the neural networks have unique equilibrium points. To judge the global asymptotic stability of the equilibrium points, we introduce a new neural network model - standard neural network model (SNNM). For the SNNMs, we derive the sufficient conditions for the global asymptotic stability of the equilibrium points, which are formulated as some linear matrix inequalities (LMIs). We transform the discrete-time BAM into the SNNM and apply the general result about the SNNM to the determination of global asymptotic stability of the discrete-time BAM. The approach proposed extends the known stability results, has lower conservativeness, can be verified easily, and can also be applied to other forms of recurrent neural networks.
基金supported by the National Natural Science Foundation of China(6077504760835004)+2 种基金the National High Technology Research and Development Program of China(863 Program)(2007AA04Z244 2008AA04Z214)the Graduate Innovation Fundation of Hunan Province(CX2010B132)
文摘The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results.
基金Supported by the National Natural Science Foundation of P.R.China (60274017, 60572070, 60325311) the Natural Science Foundation of Liaoning Province (20022030)
文摘The robust stability of a class of Hopfield neural networks with multiple delays and parameter perturbations is analyzed. The sufficient conditions for the global robust stability of equilibrium point are given by way of constructing a suitable Lyapunov functional. The conditions take the form of linear matrix inequality (LMI), so they are computable and verifiable efficiently. Furthermore, all the results are obtained without assuming the differentiability and monotonicity of activation functions. From the viewpoint of system analysis, our results provide sufficient conditions for the global robust stability in a manner that they specify the size of perturbation that Hopfield neural networks can endure when the structure of the network is given. On the other hand, from the viewpoint of system synthesis, our results can answer how to choose the parameters of neural networks to endure a given perturbation.
文摘四元数神经网络将实值神经网络推广到了四元数代数中,其在偏振合成孔径雷达奇异点补偿、口语理解、机器人控制等任务中取得了比实值神经网络更高的精度或更快的收敛速度.四元数神经网络的性能在实验中已得到广泛验证,但四元数神经网络的理论性质及其相较于实值神经网络的优势研究较少.从表示能力的角度出发,研究四元数神经网络的理论性质及其相较于实值神经网络的优势.首先,证明了四元数神经网络使用一个非分开激活的修正线性单元(rectified linear unit,ReLU)型激活函数时的通用近似定理.其次,研究了四元数神经网络相较于实值神经网络的逼近优势.针对分开激活的ReLU型激活函数,证明了单隐层实值神经网络需要约4倍参数量才能生成与单隐层四元数神经网络相同的最大凸线性区域数.针对非分开激活的ReLU型激活函数,证明了单隐层四元数神经网络与单隐层实值神经网络间的逼近分离:四元数神经网络可用相同的隐层神经元数量与权重模长表示实值神经网络,而实值神经网络需要指数多个隐层神经元或指数大的参数才可能近似四元数神经网络.最后,模拟实验验证了理论.