This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be sol...This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.展开更多
In this paper, the matrix algebraic equations involved in the optimal control problem of time-invariant linear Ito stochastic systems, named Riccati- Ito equations in the paper, are investigated. The necessary and suf...In this paper, the matrix algebraic equations involved in the optimal control problem of time-invariant linear Ito stochastic systems, named Riccati- Ito equations in the paper, are investigated. The necessary and sufficient condition for the existence of positive definite solutions of the Riccati- Ito equations is obtained and an iterative solution to the Riccati- Ito equations is also given in the paper thus a complete solution to the basic problem of optimal control of time-invariant linear Ito stochastic systems is then obtained. An example is given at the end of the paper to illustrate the application of the result of the paper.展开更多
文摘This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.
文摘In this paper, the matrix algebraic equations involved in the optimal control problem of time-invariant linear Ito stochastic systems, named Riccati- Ito equations in the paper, are investigated. The necessary and sufficient condition for the existence of positive definite solutions of the Riccati- Ito equations is obtained and an iterative solution to the Riccati- Ito equations is also given in the paper thus a complete solution to the basic problem of optimal control of time-invariant linear Ito stochastic systems is then obtained. An example is given at the end of the paper to illustrate the application of the result of the paper.