In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ...In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.展开更多
A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a n...A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a new mitigation method is urgently expected to be explored.This study proposed a novel asymptotic linear method(ALM)for micro pressure wave(MPW)mitigation to achieve a constant gradient of initial c ompression waves(ICWs),via a study with various open ratios on hoods.The properties of ICWs and MPWs under various open ratios of hoods were analyzed.The results show that as the open ratio increases,the MPW amplitude at the tunnel exit initially decreases before rising.At the open ratio of 2.28%,the slope of the ICW curve is linearly coincident with a supposed straight line in the ALM,which further reduces the MPW amplitude by 26.9%at 20 m and 20.0%at 50 m from the exit,as compared to the unvented hood.Therefore,the proposed method effectively mitigates MPW and quickly determines the upper limit of alleviation for the MPW amplitude at a fixed train-tunnel operation condition.All achievements provide a ne w potential measure for the adaptive design of tunnel hoods.展开更多
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLAD...This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLADRC)-based control system is transformed into a multi-input multi-output(MIMO)Lurie-like system,then sufficient condition for absolute stability based on linear matrix inequality(LMI)is proposed.Since the absolute stability is a kind of global stability,Lyapunov stability is further considered.The local asymptotical stability can be deter-mined by whether a matrix is Hurwitz or not.Using the inverted pendulum as an example,the proposed methods are verified by simulation and experiment,which show the valuable guidance for engineers to design and analyze the NL ADRC-based control system.展开更多
This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be sol...This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.展开更多
An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the ...An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm.展开更多
This paper is focused on developing a tracking controller for a hypersonic cruise vehicle using tangent linearization approach.The design of flight control systems for air-breathing hypersonic vehicles is a highly cha...This paper is focused on developing a tracking controller for a hypersonic cruise vehicle using tangent linearization approach.The design of flight control systems for air-breathing hypersonic vehicles is a highly challenging task due to the unique characteristics of the vehicle dynamics.Motivated by recent results on tangent linearization control,the tracking control problem for the hypersonic cruise vehicle is reduced to that of a feedback stabilizing controller design for a linear time-varying system which can be accomplished by a standard design method of frozen-time control.Through a proper model transformation,it can be proven that the tracking error of the designed closed-loop system decays exponentially.Simulation studies are conducted for trimmed cruise conditions of 110000 ft and Mach 15 where the responses of the vehicle to step changes in altitude and velocity are evaluated.The effectiveness of the controller is demonstrated by simulation results.展开更多
The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear sy...The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.展开更多
To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally toleran...To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally tolerant to disturbances and sensitive to fault, the robustness and stability properties of the fault diagnosis scheme are established rigorously. Using the residual vector, a fault tolerant controller is established in order to guarantee the stability of the closed-loop system, and the controller law can be obtained by solving a set of linear matrix inequalities. Then, some relevant sufficient conditions for the existence of a solution are given by applying Lyapunov stability theory. Finally, a simulation example is performed to show the effectiveness of the proposed approach.展开更多
A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the...A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the occurrence of sliding mode even when the system is undergoing parameter uncertainties and external disturbance. The resulting sliding mode has the same order as the original system, so that it becomes easy to solve the H∞ control problem by designing a memoryless H∞ state feedback controller. A delay-dependent sufficient condition is proposed in terms of linear matrix inequalities (LMIs), which guarantees the sliding mode robust asymptotically stable and has a noise attenuation level γ in an H∞ sense. The admissible state feedback controller can be found by solving a sequential minimization problem subject to LMI constraints by applying the cone complementary linearization method. This design scheme combines the strong robustness of the sliding mode control with the H∞ norm performance. A numerical example is given to illustrate the effectiveness of the proposed scheme.展开更多
The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlineariti...The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.展开更多
A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertai...A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertainty are estimated by the T-S fuzzy system, and a robust adaptive control law is designed by the Lyapunov theory. Irrespective of whether the dimensions of the system and the rules of the fuzzy system are large or small, there is only one parameter adjusting on line. Uniformly ultimately boundedness of all signals of the composite closed-loop system are proved by theory analysis. Finally, a numerical example is studied based on the proposed method. The simulation results demonstrate the effectiveness and robustness of the control scheme.展开更多
A μ analysis and μ synthesis method for nonlinear robust control systems was presented. The nonlinear robust contrl problem using μ method was described. By means of the nonlinear state feedback and state coordin...A μ analysis and μ synthesis method for nonlinear robust control systems was presented. The nonlinear robust contrl problem using μ method was described. By means of the nonlinear state feedback and state coordinates transformation, many uncertain nonlinear systems can be transformed as a linear fractional transformation (LFT) on the generalized plant and the uncertainty. Based on the LFT, a linear robust controller can be obtained by the DK iteration and then a corresponding nonlinear robust control law is constructed. An example was given in the paper.展开更多
The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are de...The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are derived to guarantee the stability of the overall fuzzy system. The stabilization conditions are further formulated into linear matrix inequality (LMI) so that the desired controller can be easily obtained by using the Matlab LMI toolbox. In comparison with the existing results, the drawbacks, such as coordinate transformation, same output matrices, have been elim- inated. Finally, a simulation example shows that the approach is effective.展开更多
Performance robustness problems via the state feedback controller are investigated for a class of uncertain nonlinear systems with time-delay in both state and control, in which the neural networks are used to model t...Performance robustness problems via the state feedback controller are investigated for a class of uncertain nonlinear systems with time-delay in both state and control, in which the neural networks are used to model the nonlinearities. By using an appropriate uncertainty description and the linear difference inclusion technique, sufficient conditions for existence of such controller are derived based on the linear matrix inequalities (LMIs). Using solutions of LMIs, a state feedback control law is proposed to stabilize the perturbed system and guarantee an upper bound of system performance, which is applicable to arbitrary time-delays.展开更多
Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbu...Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.展开更多
基金Supported by the Beijing Municipal Science&Technology Commission(Z211100004421012),the Key Reaserch and Development Pro⁃gram of China(2022YFF0605902)。
文摘In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.
基金Project(24A0006)supported by the Key Project of Scientific Research Fund of Hunan Provincial Department of Education,ChinaProject(2024JJ5430)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(2024JK2045,2023RC3061)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a new mitigation method is urgently expected to be explored.This study proposed a novel asymptotic linear method(ALM)for micro pressure wave(MPW)mitigation to achieve a constant gradient of initial c ompression waves(ICWs),via a study with various open ratios on hoods.The properties of ICWs and MPWs under various open ratios of hoods were analyzed.The results show that as the open ratio increases,the MPW amplitude at the tunnel exit initially decreases before rising.At the open ratio of 2.28%,the slope of the ICW curve is linearly coincident with a supposed straight line in the ALM,which further reduces the MPW amplitude by 26.9%at 20 m and 20.0%at 50 m from the exit,as compared to the unvented hood.Therefore,the proposed method effectively mitigates MPW and quickly determines the upper limit of alleviation for the MPW amplitude at a fixed train-tunnel operation condition.All achievements provide a ne w potential measure for the adaptive design of tunnel hoods.
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金supported by the National Natural Science Foundation of China(61836001).
文摘This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLADRC)-based control system is transformed into a multi-input multi-output(MIMO)Lurie-like system,then sufficient condition for absolute stability based on linear matrix inequality(LMI)is proposed.Since the absolute stability is a kind of global stability,Lyapunov stability is further considered.The local asymptotical stability can be deter-mined by whether a matrix is Hurwitz or not.Using the inverted pendulum as an example,the proposed methods are verified by simulation and experiment,which show the valuable guidance for engineers to design and analyze the NL ADRC-based control system.
文摘This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.
基金Project(61074074)supported by the National Natural Science Foundation,ChinaProject(KT2012C01J0401)supported by the Group Innovation Fund,China
文摘An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm.
基金Supported by the State Key Program of National Natural Science of China (60534010), National Basic Research Program of China (973 Program)(2009CB320604), National Natural Science Foundation of China (60674021), the Funds for Creative Research Groups of China (60521003), the 111 Project(B08015), and the Funds of Ph.D. Program of Ministry of Eduction, China (20060145019).
基金supported by the National Natural Science Foundation of China (6071000260904007)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in Universitythe State Key Laboratory of Robotics and System (SKLRS200801AO3)
文摘This paper is focused on developing a tracking controller for a hypersonic cruise vehicle using tangent linearization approach.The design of flight control systems for air-breathing hypersonic vehicles is a highly challenging task due to the unique characteristics of the vehicle dynamics.Motivated by recent results on tangent linearization control,the tracking control problem for the hypersonic cruise vehicle is reduced to that of a feedback stabilizing controller design for a linear time-varying system which can be accomplished by a standard design method of frozen-time control.Through a proper model transformation,it can be proven that the tracking error of the designed closed-loop system decays exponentially.Simulation studies are conducted for trimmed cruise conditions of 110000 ft and Mach 15 where the responses of the vehicle to step changes in altitude and velocity are evaluated.The effectiveness of the controller is demonstrated by simulation results.
基金supported by the Doctoral Foundation of Qingdao University of Science and Technology(0022330).
文摘The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.
基金supported by the National Natural Science Foundation of China(90816023).
文摘To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally tolerant to disturbances and sensitive to fault, the robustness and stability properties of the fault diagnosis scheme are established rigorously. Using the residual vector, a fault tolerant controller is established in order to guarantee the stability of the closed-loop system, and the controller law can be obtained by solving a set of linear matrix inequalities. Then, some relevant sufficient conditions for the existence of a solution are given by applying Lyapunov stability theory. Finally, a simulation example is performed to show the effectiveness of the proposed approach.
基金This project was supported by the National Natural Science Foundation of China(69874008)
文摘A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the occurrence of sliding mode even when the system is undergoing parameter uncertainties and external disturbance. The resulting sliding mode has the same order as the original system, so that it becomes easy to solve the H∞ control problem by designing a memoryless H∞ state feedback controller. A delay-dependent sufficient condition is proposed in terms of linear matrix inequalities (LMIs), which guarantees the sliding mode robust asymptotically stable and has a noise attenuation level γ in an H∞ sense. The admissible state feedback controller can be found by solving a sequential minimization problem subject to LMI constraints by applying the cone complementary linearization method. This design scheme combines the strong robustness of the sliding mode control with the H∞ norm performance. A numerical example is given to illustrate the effectiveness of the proposed scheme.
基金supported partly by the National Natural Science Foundation of China(60574001)the Program for New Century Excellent Talents in University(050485)the Program for Innovative Research Team of Jiangnan University.
文摘The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.
基金the National Natural Science Foundation of China (90716028 and 90405011).
文摘A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertainty are estimated by the T-S fuzzy system, and a robust adaptive control law is designed by the Lyapunov theory. Irrespective of whether the dimensions of the system and the rules of the fuzzy system are large or small, there is only one parameter adjusting on line. Uniformly ultimately boundedness of all signals of the composite closed-loop system are proved by theory analysis. Finally, a numerical example is studied based on the proposed method. The simulation results demonstrate the effectiveness and robustness of the control scheme.
文摘A μ analysis and μ synthesis method for nonlinear robust control systems was presented. The nonlinear robust contrl problem using μ method was described. By means of the nonlinear state feedback and state coordinates transformation, many uncertain nonlinear systems can be transformed as a linear fractional transformation (LFT) on the generalized plant and the uncertainty. Based on the LFT, a linear robust controller can be obtained by the DK iteration and then a corresponding nonlinear robust control law is constructed. An example was given in the paper.
文摘The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are derived to guarantee the stability of the overall fuzzy system. The stabilization conditions are further formulated into linear matrix inequality (LMI) so that the desired controller can be easily obtained by using the Matlab LMI toolbox. In comparison with the existing results, the drawbacks, such as coordinate transformation, same output matrices, have been elim- inated. Finally, a simulation example shows that the approach is effective.
基金This project was supported by the National Natural Science Foundation of China (60574001)Program for New Century Excellent Talents in University (NCET-05-0485).
文摘Performance robustness problems via the state feedback controller are investigated for a class of uncertain nonlinear systems with time-delay in both state and control, in which the neural networks are used to model the nonlinearities. By using an appropriate uncertainty description and the linear difference inclusion technique, sufficient conditions for existence of such controller are derived based on the linear matrix inequalities (LMIs). Using solutions of LMIs, a state feedback control law is proposed to stabilize the perturbed system and guarantee an upper bound of system performance, which is applicable to arbitrary time-delays.
基金Project(JCYJ20190808175801656)supported by the Science and Technology Innovation Commission of Shenzhen,ChinaProject(2021M691427)supported by Postdoctoral Science Foundation of ChinaProject(9680086)supported by the City University of Hong Kong,China。
文摘Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.